Clinical Applications for Spread of Excitation Functions Obtained Via Electrically Evoked Compound Action Potentials (eCAP)

Author:

Berg Katelyn A.1ORCID,DeFreese Andrea J.1,Sisler-Dinwiddie Allyson L.1,Labadie Robert F.2,Tawfik Kareem O.,Gifford René H.1

Affiliation:

1. Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, Tennessee

2. Department of Otolaryngology–Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina

Abstract

Objectives To assess the clinical utility of spread of excitation (SOE) functions obtained via electrically evoked compound action potentials (eCAP) to 1) identify electrode array tip fold-over, 2) predict electrode placement factors confirmed via postoperative computed tomography (CT) imaging, and 3) predict postoperative speech recognition through the first year post-activation in a large clinical sample. Study Design Retrospective case review Setting Cochlear implant (CI) program at a tertiary medical center Patients Two hundred seventy-two ears (238 patients) with Cochlear Ltd. CIs (mean age = 46 yr, range = 9 mo–93 yr, 50% female) implanted between August 2014 and December 2022 were included. Main Outcome Measures eCAP SOE widths (mm) (probe electrodes 5, 11, and 17), incidence of electrode tip fold-over, CT imaging data (electrode-to-modiolus distance, angular insertion depth, scalar location), and speech recognition outcomes (consonant–nucleus–consonant [CNC], AzBio quiet, and +5 dB SNR) through the first year after CI activation. Results 1) eCAP SOE demonstrated a sensitivity of 85.7% for identifying tip fold-over instances that were confirmed by CT imaging. In the current dataset, the tip fold-over incidence rate was 3.1% (7 patients), with all instances involving a precurved electrode array. 2) There was a significant positive relationship between eCAP SOE and mean electrode-to-modiolus distance for precurved arrays, and a significant positive relationship between eCAP SOE and angular insertion depth for straight arrays. No relationships between eCAP SOE and scalar location or cochlea diameter were found in this sample. 3) There were no significant relationships between eCAP SOE and speech recognition outcomes for any measure or time point, except for a weak negative correlation between average eCAP SOE widths and CNC word scores at 6 months post-activation for precurved arrays. Conclusions In the absence of intraoperative CT or fluoroscopic imaging, eCAP SOE is a reasonable alternative method for identifying electrode array tip fold-over and should be routinely measured intraoperatively, especially for precurved electrode arrays with a sheath.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3