The Application of Adaptive Minimum Match k-Nearest Neighbors to Identify At-Risk Students in Health Professions Education

Author:

Kumar Anshul,DiJohnson Taylor,Edwards Roger A.,Walker Lisa

Abstract

Introduction When learners fail to reach milestones, educators often wonder if any warning signs could have allowed them to intervene sooner. Machine learning can predict which students are at risk for failing a high-stakes certification examination. If predictions can be made well before the examination, educators can meaningfully intervene before students take the examination to reduce their chances of failing. Methods The authors used already-collected, first-year student assessment data from 5 cohorts in a single Master of Physician Assistant Studies program to implement an “adaptive minimum match” version of the k-nearest neighbors algorithm using changing numbers of neighbors to predict each student's future examination scores on the Physician Assistant National Certifying Exam (PANCE). Validation occurred in 2 ways by using leave-one-out cross-validation (LOOCV) and by evaluating predictions in a new cohort. Results “Adaptive minimum match” version of the k-nearest neighbors algorithm achieved an accuracy of 93% in LOOCV. “Adaptive minimum match” version of the k-nearest neighbors algorithm generates a predicted PANCE score for each student one year before they take the examination. Students are classified into extra support, optional extra support, or no extra support categories. Then, one year remains to provide appropriate support to each category of student. Discussion Predictive analytics can identify at-risk students who might need additional support or remediation before high-stakes certification examinations. Educators can use the included methods and code to generate predicted test outcomes for students. The authors recommend that educators use predictive modeling responsibly and transparently, as one of many tools used to support students. More research is needed to test alternative machine learning methods across a variety of educational programs.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Medical Assisting and Transcription,Education

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3