Association of retinal image–based, deep learning cardiac BioAge with telomere length and cardiovascular biomarkers

Author:

Vaghefi EhsanORCID,An Songyang,Corbett Rini1,Squirrell David

Affiliation:

1. Toku Eyes, Auckland, New Zealand

Abstract

SIGNIFICANCE Our retinal image–based deep learning (DL) cardiac biological age (BioAge) model could facilitate fast, accurate, noninvasive screening for cardiovascular disease (CVD) in novel community settings and thus improve outcome with those with limited access to health care services. PURPOSE This study aimed to determine whether the results issued by our DL cardiac BioAge model are consistent with the known trends of CVD risk and the biomarker leukocyte telomere length (LTL), in a cohort of individuals from the UK Biobank. METHODS A cross-sectional cohort study was conducted using those individuals in the UK Biobank who had LTL data. These individuals were divided by sex, ranked by LTL, and then grouped into deciles. The retinal images were then presented to the DL model, and individual's cardiac BioAge was determined. Individuals within each LTL decile were then ranked by cardiac BioAge, and the mean of the CVD risk biomarkers in the top and bottom quartiles was compared. The relationship between an individual's cardiac BioAge, the CVD biomarkers, and LTL was determined using traditional correlation statistics. RESULTS The DL cardiac BioAge model was able to accurately stratify individuals by the traditional CVD risk biomarkers, and for both males and females, those issued with a cardiac BioAge in the top quartile of their chronological peer group had a significantly higher mean systolic blood pressure, hemoglobin A1c, and 10-year Pooled Cohort Equation CVD risk scores compared with those individuals in the bottom quartile (p<0.001). Cardiac BioAge was associated with LTL shortening for both males and females (males: −0.22, r 2 = 0.04; females: −0.18, r 2 = 0.03). CONCLUSIONS In this cross-sectional cohort study, increasing CVD risk whether assessed by traditional biomarkers, CVD risk scoring, or our DL cardiac BioAge, CVD risk model, was inversely related to LTL. At a population level, our data support the growing body of evidence that suggests LTL shortening is a surrogate marker for increasing CVD risk and that this risk can be captured by our novel DL cardiac BioAge model.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Reference27 articles.

1. Diabetes and cardiovascular disease: An update;Curr Diab Rep,2019

2. Hypertension and cardiovascular risk: General aspects;Pharmacol Res,2018

3. Relationship between hyperlipidemia, cardiovascular disease and stroke: A systematic review;Curr Cardiol Rev,2021

4. Effects of tobacco smoking on cardiovascular disease;Circ J,2019

5. Use of risk assessment tools to guide decision-making in the primary prevention of atherosclerotic cardiovascular disease: A special report from the American Heart Association and American College of Cardiology;Circulation,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3