Clusterin is upregulated by erastin, a ferroptosis inducer and exerts cytoprotective effects in pancreatic adenocarcinoma cells

Author:

Li Yichen1,Wang Xing1,Chen Yong-Hua1,Tan Qing-Quan1,Liu Xu-Bao1,Tan Chunlu1

Affiliation:

1. Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China

Abstract

Ferroptosis is a novel form of cell death, which is distinguished from apoptosis and necrosis, and characterized by accumulation of lipid-based reactive oxygen species (ROS) in an iron-dependent manner. Erastin, a small molecule, was widely reported to trigger ferroptosis in various kinds of cancer cells, including pancreatic cancer cells by inducing ROS accumulation. However, how erastin treatment exerts cytotoxicity is not still fully understood. In this study, the effects of erastin in causing pancreatic cancer cell death via inducing ferroptosis and apoptosis are investigated. As expected, erastin treatment caused ROS accumulation, increase in iron concentration and non-apoptotic cell death, which is different from that of induced by apoptosis inducer, staurosporine. Interestingly, erastin treatment caused the upregulation of clusterin, which contributes to the regulation of malignant behaviors of pancreatic cancer, including preventing apoptosis and inducing chemoresistance. Without erastin treatment, overexpressed clusterin significantly promoted cell proliferation, which is consistent with its cytoprotective roles. After erastin treatment, overexpressed clusterin decreased erastin-induced ROS accumulation and cell death. By measuring iron concentration, reduced glutathione (GSH) and glutathione peroxidase 4 (GPX4), it is revealed that clusterin caused resistance to erastin-induced ferroptosis potentially via maintaining the enzymatic activity of GPX4, without disturbing GSH amount. Thus, ferroptosis inducer, erastin, may crosstalk with apoptotic cell death via regulating clusterin, indicating a more complex regulatory network between ferroptosis and apoptosis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cancer Research,Pharmacology (medical),Pharmacology,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3