Regulation of cervical cancer via G15-mediated inhibition of G protein-coupled estrogen receptor

Author:

Zhu Ziyan1,Nie Xinyi1,Deng Lexiu1,Ding Jia1,Chen Jiangping2,Zhu Jingyi1,Yin Xiaoxia3,Guo Bowei3,Zhang Fan3

Affiliation:

1. Graduate School, Hebei North University, Departments of

2. Obstetrics and Gynecology

3. Pathology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China

Abstract

Cervical cancer is among the most common gynecological malignancies. G protein-coupled estrogen receptor (GPER) is involved in the development of various tumors; however, its role in cervical cancer remains unclear. We investigated whether G15, an inhibitor of GPER, can regulate its expression and affect cervical cancer progression. We examined the biological behaviors of G15-treated SiHa and HeLa cells using Cell Counting Kit-8, monoclonal proliferation, plate scratching, and Transwell invasion experiments. Western blotting was used to detect the expression of GPER, E-cadherin, N-cadherin, vimentin, Bcl-2, Bax, phosphatidylinositol-3-kinase (PI3K)/AKT, and programmed death ligand 1 (PD-L1). The expression of GPER, E-cadherin, vimentin, and PD-L1 in cervical cancer and adjacent tissues was detected using immunohistochemistry. The correlation between GPER expression and clinicopathological characteristics was analyzed. The expression of GPER in cervical cancer tissues was significantly higher than that in paracancerous tissues, and it was detected in the membrane and cytoplasm of SiHa and HeLa cells. The proliferation, migration, and invasion abilities of SiHa and HeLa cells were reduced after G15 treatment. The G15-treated groups exhibited higher expression of E-cadherin and Bax and lower expression of N-cadherin, vimentin, Bcl-2, GPER, p-PI3K, p-AKT, and PD-L1 than the control group. The expression of E-cadherin was lower and that of vimentin was higher in cancer tissues than in paracancerous tissues; PD-L1 was highly expressed in tumor and stromal cells in cancer tissues but not in paracancerous tissues. G15 functions by regulating the GPER/PI3K/AKT/PD-L1 signaling pathway and may serve as a new immunotherapy for treating patients with cervical cancer.

Funder

the Specialty Capacity Building and Specialty Leader Training Project of the Hebei Provincial Department of Finance

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3