Development and Validation of a Deep Learning Model for Prediction of Adult Physiological Deterioration

Author:

Shashikumar Supreeth P.1,Le Joshua Pei2ORCID,Yung Nathan3,Ford James4,Singh Karandeep15,Malhotra Atul6,Nemati Shamim17,Wardi Gabriel67

Affiliation:

1. Department of Biomedical Informatics, University of California San Diego, San Diego, CA.

2. School of Medicine, University of Limerick, Limerick, Ireland.

3. Division of Hospital Medicine, University of California San Diego, San Diego, CA.

4. Department of Emergency Medicine, University of California San Francisco, San Francisco, CA.

5. Division of Nephrology, Division of Hospital Medicine, University of California San Diego, San Diego, CA.

6. Division of Pulmonary, Critical Care, Sleep Medicine and Physiology, University of California San Diego, San Diego, CA.

7. Department of Emergency Medicine, University of California San Diego, San Diego, CA.

Abstract

BACKGROUND: Prediction-based strategies for physiologic deterioration offer the potential for earlier clinical interventions that improve patient outcomes. Current strategies are limited because they operate on inconsistent definitions of deterioration, attempt to dichotomize a dynamic and progressive phenomenon, and offer poor performance. OBJECTIVE: Can a deep learning deterioration prediction model (Deep Learning Enhanced Triage and Emergency Response for Inpatient Optimization [DETERIO]) based on a consensus definition of deterioration (the Adult Inpatient Decompensation Event [AIDE] criteria) and that approaches deterioration as a state “value-estimation” problem outperform a commercially available deterioration score? DERIVATION COHORT: The derivation cohort contained retrospective patient data collected from both inpatient services (inpatient) and emergency departments (EDs) of two hospitals within the University of California San Diego Health System. There were 330,729 total patients; 71,735 were inpatient and 258,994 were ED. Of these data, 20% were randomly sampled as a retrospective “testing set.” VALIDATION COHORT: The validation cohort contained temporal patient data. There were 65,898 total patients; 13,750 were inpatient and 52,148 were ED. PREDICTION MODEL: DETERIO was developed and validated on these data, using the AIDE criteria to generate a composite score. DETERIO’s architecture builds upon previous work. DETERIO’s prediction performance up to 12 hours before T0 was compared against Epic Deterioration Index (EDI). RESULTS: In the retrospective testing set, DETERIO’s area under the receiver operating characteristic curve (AUC) was 0.797 and 0.874 for inpatient and ED subsets, respectively. In the temporal validation cohort, the corresponding AUC were 0.775 and 0.856, respectively. DETERIO outperformed EDI in the inpatient validation cohort (AUC, 0.775 vs. 0.721; p < 0.01) while maintaining superior sensitivity and a comparable rate of false alarms (sensitivity, 45.50% vs. 30.00%; positive predictive value, 20.50% vs. 16.11%). CONCLUSIONS: DETERIO demonstrates promise in the viability of a state value-estimation approach for predicting adult physiologic deterioration. It may outperform EDI while offering additional clinical utility in triage and clinician interaction with prediction confidence and explanations. Additional studies are needed to assess generalizability and real-world clinical impact.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3