SIMULATED AEROMEDICAL EVACUATION EXACERBATES ACUTE LUNG INJURY VIA HYPOXIA-INDUCIBLE FACTOR 1Α–MEDIATED BNIP3/NIX-DEPENDENT MITOPHAGY

Author:

Yin Chunli,Liu Xinyang,Ma Yujie,Tang Zibo,Guo Wenmin1,Sun Bingbing1,He Jingmei1

Affiliation:

1. Department of Critical Care Medicine, PLA Air Force Medical Center, Beijing, China

Abstract

ABSTRACT Background: With the advancement of medicine and the development of technology, the limiting factors of aeromedical evacuation are gradually decreasing, and the scope of indications is expanding. However, the hypobaric and hypoxic environments experienced by critically ill patients in flight can cause lung injury, leading to inflammation and hypoxemia, which remains one of the few limiting factors for air medical evacuation. This study aimed to examine the mechanism of secondary lung injury in rat models of acute lung injury that simulate aeromedical evacuation. Methods: An acute lung injury model was induced in SD rats by the administration of lipopolysaccharide (LPS) followed by exposure to a simulated aeromedical evacuation environment (equivalent to 8,000 feet above sea level) or a normobaric normoxic environment for 4 h. The expression of hypoxia-inducible factor 1α (HIF-1α) was stabilized by pretreatment with dimethyloxalylglycine. The reactive oxygen species levels and the protein expression levels of HIF-1α, Bcl-2-interacting protein 3 (BNIP3), and NIX in lung tissue were measured. Results: Simulated aeromedical evacuation exacerbated pathological damage to lung tissue and increased the release of inflammatory cytokines in serum as well as the reactive oxygen species levels and the protein levels of HIF-1α, BNIP3, and NIX in lung tissue. Pretreatment with dimethyloxalylglycine resulted in increases in the protein expression of HIF-1α, BNIP3, and NIX. Conclusion: Simulated aeromedical evacuation leads to secondary lung injury through mitophagy.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3