INTERPRETABLE MACHINE LEARNING FOR PREDICTING RISK OF INVASIVE FUNGAL INFECTION IN CRITICALLY ILL PATIENTS IN THE INTENSIVE CARE UNIT: A RETROSPECTIVE COHORT STUDY BASED ON MIMIC-IV DATABASE

Author:

Cao Yuan1,Li Yun,Wang Min,Wang Lu,Fang Yuan2,Wu Yiqi,Liu Yuyan,Liu Yixuan1,Hao Ziqian1,Kang Hongjun2ORCID,Gao Hengbo1

Affiliation:

1. Emergency Department, The Second Hospital of Hebei Medical University, Shijiazhuang, China

2. Department of Critical Care Medicine, the First Medical Centre, Chinese PLA General Hospital, Beijing, China

Abstract

ABSTRACT The delayed diagnosis of invasive fungal infection (IFI) is highly correlated with poor prognosis in patients. Early identification of high-risk patients with invasive fungal infections and timely implementation of targeted measures is beneficial for patients. The objective of this study was to develop a machine learning-based predictive model for invasive fungal infection in patients during their intensive care unit (ICU) stay. Retrospective data was extracted from adult patients in the MIMIC-IV database who spent a minimum of 48 h in the ICU. Feature selection was performed using LASSO regression, and the dataset was balanced using the BL-SMOTE approach. Predictive models were built using six machine learning algorithms. The Shapley additive explanation algorithm was used to assess the impact of various clinical features in the optimal model, enhancing interpretability. The study included 26,346 ICU patients, of whom 379 (1.44%) were diagnosed with invasive fungal infection. The predictive model was developed using 20 risk factors, and the dataset was balanced using the borderline-SMOTE (BL-SMOTE) algorithm. The BL-SMOTE random forest model demonstrated the highest predictive performance (area under curve = 0.88, 95% CI = 0.84–0.91). Shapley additive explanation analysis revealed that the three most influential clinical features in the BL-SMOTE random forest model were dialysis treatment, APSIII scores, and liver disease. The machine learning model provides a reliable tool for predicting the occurrence of IFI in ICU patients. The BL-SMOTE random forest model, based on 20 risk factors, exhibited superior predictive performance and can assist clinicians in early assessment of IFI occurrence in ICU patients. Importance: Invasive fungal infections are characterized by high incidence and high mortality rates characteristics. In this study, we developed a clinical prediction model for invasive fungal infections in critically ill patients based on machine learning algorithms. The results show that the machine learning model based on 20 clinical features has good predictive value.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3