New Tools for Data Harmonization and Their Potential Applications in Organ Transplantation

Author:

Tabatabaei Hosseini Seyed Amir1,Kazemzadeh Reza1,Foster Bethany Joy234,Arpali Emre1,Süsal Caner1

Affiliation:

1. Transplant Immunology Research Center of Excellence, Koç University Hospital, Istanbul, Turkey.

2. Department of Pediatrics, McGill University, Montreal, QC, Canada.

3. Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada.

4. Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada.

Abstract

In organ transplantation, accurate analysis of clinical outcomes requires large, high-quality data sets. Not only are outcomes influenced by a multitude of factors such as donor, recipient, and transplant characteristics and posttransplant events but they may also change over time. Although large data sets already exist and are continually expanding in transplant registries and health institutions, these data are rarely combined for analysis because of a lack of harmonization. Promoted by the digitalization of the healthcare sector, effective data harmonization tools became available, with potential applications also for organ transplantation. We discuss herein the present problems in the harmonization of organ transplant data and offer solutions to enhance its accuracy through the use of emerging new tools. To overcome the problem of inadequate representation of transplantation-specific terms, ontologies and common data models particular to this field could be created and supported by a consortium of related stakeholders to ensure their broad acceptance. Adopting clear data-sharing policies can diminish administrative barriers that impede collaboration between organizations. Secure multiparty computation frameworks and the artificial intelligence (AI) approach federated learning can facilitate decentralized and harmonized analysis of data sets, without sharing sensitive data and compromising patient privacy. A common image data model built upon a standardized format would be beneficial to AI-based analysis of pathology images. Implementation of these promising new tools and measures, ideally with the involvement and support of transplant societies, is expected to produce improved integration and harmonization of transplant data and greater accuracy in clinical decision-making, enabling improved patient outcomes.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3