An experimental model for primary neuropathic corneal pain induced by long ciliary nerve ligation in rats

Author:

Wu Jinhong1,Yuan Tianjie1,Fu Danyun1,Xu Rui1,Zhang Wenna1,Li Shuangshuang1,Ding Jiahui1,Feng Lili1,Xia Ying1,Wang Jijiang2,Li Wenxian1,Han Yuan1

Affiliation:

1. Department of Anesthesiology, Eye & ENT Hospital of Fudan University, Xuhui District, Shanghai, China

2. Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Xuhui District, Shanghai, China

Abstract

Abstract Neuropathic corneal pain (NCP) is a new and ill-defined disease characterized by pain, discomfort, aching, burning sensation, irritation, dryness, and grittiness. However, the mechanism underlying NCP remain unclear. Here, we reported a novel rat model of primary NCP induced by long ciliary nerve (LCN) ligation. After sustained LCN ligation, the rats developed increased corneal mechanical and chemical sensitivity, spontaneous blinking, and photophobia, which were ameliorated by intraperitoneal injection of morphine or gabapentin. However, neither tear reduction nor corneal injury was observed in LCN-ligated rats. Furthermore, after LCN ligation, the rats displayed a significant reduction in corneal nerve density, as well as increased tortuosity and beading nerve ending. Long ciliary nerve ligation also notably elevated corneal responsiveness under resting or menthol-stimulated conditions. At a cellular level, we observed that LCN ligation increased calcitonin gene–related peptide (neuropeptide)–positive cells in the trigeminal ganglion (TG). At a molecular level, upregulated mRNA levels of ion channels Piezo2, TRPM8, and TRPV1, as well as inflammatory factors TNF-α, IL-1β, and IL-6, were also detected in the TG after LCN ligation. Meanwhile, consecutive oral gabapentin attenuated LCN ligation–induced corneal hyperalgesia and increased levels of ion channels and inflammation factors in TG. This study provides a reliable primary NCP model induced by LCN ligation in rats using a simple, minimally invasive surgery technique, which may help shed light on the underlying cellular and molecular bases of NCP and aid in developing a new treatment for the disease.

Funder

Office of Global Partnerships (Key Projects Development Fund)

National Natural Science Foundation of China

Natural Science Foundation of Shanghai

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine,Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3