Refining Predictive Models in Critically Ill Patients with Acute Renal Failure

Author:

Mehta Ravindra L.,Pascual Maria T.,Gruta Carmencita G.,Zhuang Shunping,Chertow Glenn M.

Abstract

ABSTRACT. Mortality rates in acute renal failure remain extremely high, and risk-adjustment tools are needed for quality improvement initiatives and design (stratification) and analysis of clinical trials. A total of 605 patients with acute renal failure in the intensive care unit during 1989-1995 were evaluated, and demographic, historical, laboratory, and physiologic variables were linked with in-hospital death rates using multivariable logistic regression. Three hundred and fourteen (51.9%) patients died in-hospital. The following variables were significantly associated with in-hospital death: age (odds ratio [OR], 1.02 per yr), male gender (OR, 2.36), respiratory (OR, 2.62), liver (OR, 3.06), and hematologic failure (OR, 3.40), creatinine (OR, 0.71 per mg/dl), blood urea nitrogen (OR, 1.02 per mg/dl), log urine output (OR, 0.64 per log ml/d), and heart rate (OR, 1.01 per beat/min). The area under the receiver operating characteristic curve was 0.83, indicating good model discrimination. The model was superior in all performance metrics to six generic and four acute renal failure-specific predictive models. A disease-specific severity of illness equation was developed using routinely available and specific clinical variables. Cross-validation of the model and additional bedside experience will be needed before it can be effectively applied across centers, particularly in the context of clinical trials.

Publisher

American Society of Nephrology (ASN)

Subject

Nephrology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3