Methadone Pharmacogenetics

Author:

Kharasch Evan D.1,Regina Karen J.1,Blood Jane1,Friedel Christina1

Affiliation:

1. From the Division of Clinical and Translational Research, Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri (E.D.K., K.J.R., J.B., C.F.); and Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, Missouri (E.D.K.).

Abstract

Abstract Background Interindividual variability in methadone disposition remains unexplained, and methadone accidental overdose in pain therapy is a significant public health problem. Cytochrome P4502B6 (CYP2B6) is the principle determinant of clinical methadone elimination. The CYP2B6 gene is highly polymorphic, with several variant alleles. CYP2B6.6, the protein encoded by the CYP2B6*6 polymorphism, deficiently catalyzes methadone metabolism in vitro. This investigation determined the influence of CYP2B6*6, and other allelic variants encountered, on methadone concentrations, clearance, and metabolism. Methods Healthy volunteers in genotype cohorts CYP2B6*1/*1 (n = 21), CYP2B6*1/*6 (n = 20), and CYP2B6*6/*6 (n = 17), and also CYP2B6*1/*4 (n = 1), CYP2B6*4/*6 (n = 3), and CYP2B6*5/*5 (n = 2) subjects, received single doses of IV and oral methadone. Plasma and urine methadone and metabolite concentrations were determined by tandem mass spectrometry. Results Average S-methadone apparent oral clearance was 35 and 45% lower in CYP2B6*1/*6 and CYP2B6*6/*6 genotypes, respectively, compared with CYP2B6*1/*1. R-methadone apparent oral clearance was 25 and 35% lower in CYP2B6*1/*6 and CYP2B6*6/*6 genotypes, respectively, compared with CYP2B6*1/*1. R- and S-methadone apparent oral clearance was threefold and fourfold greater in CYP2B6*4 carriers. IV and oral R- and S-methadone metabolism was significantly lower in CYP2B6*6 carriers compared with that of CYP2B6*1 homozygotes and greater in CYP2B6*4 carriers. Methadone metabolism and clearance were lower in African Americans in part because of the CYP2B6*6 genetic polymorphism. Conclusions CYP2B6 polymorphisms influence methadone plasma concentrations, because of altered methadone metabolism and thus clearance. Genetic influence is greater for oral than IV methadone and S- than R-methadone. CYP2B6 pharmacogenetics explains, in part, interindividual variability in methadone elimination. CYP2B6 genetic effects on methadone metabolism and clearance may identify subjects at risk for methadone toxicity and drug interactions.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference58 articles.

1. Clinical guidelines for the use of chronic opioid therapy in chronic noncancer pain.;J Pain,2009

2. Methadone initiation and rotation in the outpatient setting for patients with cancer pain.;Cancer,2010

3. Intraoperative methadone: Rediscovery, reappraisal, and reinvigoration?;Anesth Analg,2011

4. Integrated prevention services for HIV infection, viral hepatitis, sexually transmitted diseases, and tuberculosis for persons who use drugs illicitly: Summary guidance from CDC and the US Department of Health and Human Services.;MMWR Morb Mortal Wkly Rep,2012

5. Functional inhibition by methadone of N-methyl-D-aspartate receptors expressed in Xenopus oocytes: Stereospecific and subunit effects.;Anesth Analg,2004

Cited by 108 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3