Affiliation:
1. From the Brigham and Women’s Hospital, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Medical School, Boston, Massachusetts (J.D.M., M.H., S.K.S., S.C.B.); Department of Genetics, Harvard Medical School, Boston, Massachusetts (D.C.C., D.M., J.G., E.M., S.R.D., J.G.S.); Harvard Medical School, Boston, Massachusetts (G.L.); Northwest Anesthesia, Abbott Northwestern Hospital
Abstract
Abstract
Background:
The exact mechanisms that underlie the pathological processes of myocardial ischemia in humans are unclear. Cardiopulmonary bypass with cardioplegic arrest allows the authors to examine the whole transcriptional profile of human left ventricular myocardium at baseline and after exposure to cold cardioplegia-induced ischemia as a human ischemia model.
Methods:
The authors obtained biopsies from 45 patients undergoing aortic valve replacement surgery at baseline and after an average of 79 min of cold cardioplegic arrest. Samples were RNA sequenced and analyzed with the Partek® Genomics Suite (Partek Inc., St. Louis, MO) for differential expression. Ingenuity Pathway Analysis (Ingenuity Systems, Redwood City, CA) and Biobase ExPlain (Biobase GmbH, Wolfenbuettel, Germany) systems were used for functional and pathway analyses.
Results:
Of the 4,098 genes with a mean expression value greater than 5, 90% were down-regulated and 9.1% were up-regulated. Of those, 1,241 were significantly differentially expressed. Gene ontology analysis revealed significant down-regulation in immune inflammatory response and complement activation categories and highly consistent was the down-regulation of intelectin 1, proteoglycan, and secretory leukocyte peptidase inhibitor. Up-regulated genes of interest were FBJ murine osteosarcoma viral oncogene homolog and the hemoglobin genes hemoglobin α1 (HBA1) and hemoglobin β. In addition, analysis of transcription factor–binding sites revealed interesting targets in factors regulating reactive oxygen species production, apoptosis, immunity, cytokine production, and inflammatory response.
Conclusions:
The authors have shown that the human left ventricle exhibits significant changes in gene expression in response to cold cardioplegia-induced ischemia during cardiopulmonary bypass, which provides great insight into the pathophysiology of ventricular ischemia, and thus, may help guide efforts to reduce myocardial damage during surgery.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Anesthesiology and Pain Medicine
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献