Right Ventricular Perfusion

Author:

Crystal George J.1,Pagel Paul S.1

Affiliation:

1. From the Department of Anesthesiology, University of Illinois College of Medicine, Chicago, Illinois (G.J.C.); and Anesthesia Service, Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin (P.S.P.).

Abstract

Abstract Regulation of blood flow to the right ventricle differs significantly from that to the left ventricle. The right ventricle develops a lower systolic pressure than the left ventricle, resulting in reduced extravascular compressive forces and myocardial oxygen demand. Right ventricular perfusion has eight major characteristics that distinguish it from left ventricular perfusion: (1) appreciable perfusion throughout the entire cardiac cycle; (2) reduced myocardial oxygen uptake, blood flow, and oxygen extraction; (3) an oxygen extraction reserve that can be recruited to at least partially offset a reduction in coronary blood flow; (4) less effective pressure–flow autoregulation; (5) the ability to downregulate its metabolic demand during coronary hypoperfusion and thereby maintain contractile function and energy stores; (6) a transmurally uniform reduction in myocardial perfusion in the presence of a hemodynamically significant epicardial coronary stenosis; (7) extensive collateral connections from the left coronary circulation; and (8) possible retrograde perfusion from the right ventricular cavity through the Thebesian veins. These differences promote the maintenance of right ventricular oxygen supply–demand balance and provide relative resistance to ischemia-induced contractile dysfunction and infarction, but they may be compromised during acute or chronic increases in right ventricle afterload resulting from pulmonary arterial hypertension. Contractile function of the thin-walled right ventricle is exquisitely sensitive to afterload. Acute increases in pulmonary arterial pressure reduce right ventricular stroke volume and, if sufficiently large and prolonged, result in right ventricular failure. Right ventricular ischemia plays a prominent role in these effects. The risk of right ventricular ischemia is also heightened during chronic elevations in right ventricular afterload because microvascular growth fails to match myocyte hypertrophy and because microvascular dysfunction is present. The right coronary circulation is more sensitive than the left to α-adrenergic–mediated constriction, which may contribute to its greater propensity for coronary vasospasm. This characteristic of the right coronary circulation may increase its vulnerability to coronary vasoconstriction and impaired right ventricular perfusion during administration of α-adrenergic receptor agonists.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3