Opposing Effects on Descending Control of Nociception by µ and κ Opioid Receptors in the Anterior Cingulate Cortex

Author:

Navratilova Edita1ORCID,Qu Chaoling2,Ji Guangchen3,Neugebauer Volker4,Guerrero Miguel5,Rosen Hugh6,Roberts Edward7,Porreca Frank8ORCID

Affiliation:

1. 1Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona.

2. 2Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona.

3. 3Department of Pharmacology and Neuroscience and Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, Texas.

4. 4Department of Pharmacology and Neuroscience and Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, Texas.

5. 5Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California.

6. 6Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California.

7. 7Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California.

8. 8Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona.

Abstract

Background The efficiency of descending pain modulation, commonly assessed with the conditioned pain modulation procedure, is diminished in patients with chronic pain. The authors hypothesized that the efficiency of pain modulation is controlled by cortical opioid circuits. Methods This study evaluated the effects of µ opioid receptor activation in the anterior cingulate cortex on descending control of nociception, a preclinical correlate of conditioned pain modulation, in male Sprague-Dawley rats with spinal nerve ligation–induced chronic pain or in sham-operated controls. Additionally, the study explored the consequences of respective activation or inhibition of κ opioid receptor in the anterior cingulate cortex of naive rats or animals with neuropathic pain. Descending control of nociception was measured as the hind paw withdrawal response to noxious pressure (test stimulus) in the absence or presence of capsaicin injection in the forepaw (conditioning stimulus). Results Descending control of nociception was diminished in the ipsilateral, but not contralateral, hind paw of rats with spinal nerve ligation. Bilateral administration of morphine in the anterior cingulate cortex had no effect in shams but restored diminished descending control of nociception without altering hypersensitivity in rats with neuropathic pain. Bilateral anterior cingulate cortex microinjection of κ opioid receptor antagonists, including nor-binaltorphimine and navacaprant, also re-established descending control of nociception in rats with neuropathic pain without altering hypersensitivity and with no effect in shams. Conversely, bilateral injection of a κ opioid receptor agonist, U69,593, in the anterior cingulate cortex of naive rats inhibited descending control of nociception without altering withdrawal thresholds. Conclusions Anterior cingulate cortex κ opioid receptor activation therefore diminishes descending control of nociception both in naive animals and as an adaptive response to chronic pain, likely by enhancing net descending facilitation. Descending control of nociception can be restored by activation of μ opioid receptors in the anterior cingulate cortex, but also by κ opioid receptor antagonists, providing a nonaddictive alternative to opioid analgesics. Navacaprant is now in advanced clinical trials. Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3