Altered Global Brain Signal during Physiologic, Pharmacologic, and Pathologic States of Unconsciousness in Humans and Rats

Author:

Tanabe Sean1,Huang Zirui1,Zhang Jun1,Chen Yali1,Fogel Stuart1,Doyon Julien1,Wu Jinsong1,Xu Jianghui1,Zhang Jianfeng1,Qin Pengmin1,Wu Xuehai1,Mao Ying1,Mashour George A.1,Hudetz Anthony G.1,Northoff Georg1

Affiliation:

1. From the Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China (J.Z., Y.C., J.X.); the Department of Anesthesiology and Center for Consciousness Science, University of Michigan, Ann Arbor, Michigan (S.T., Z.H., G.A.M., A.G.H.); Institute of Mental Health Research (S.F., G.N.), School of Psychology (S.F.), University of Ottawa, Ottawa, Canada; Department of Psychology,

Abstract

Abstract Background Consciousness is supported by integrated brain activity across widespread functionally segregated networks. The functional magnetic resonance imaging–derived global brain signal is a candidate marker for a conscious state, and thus the authors hypothesized that unconsciousness would be accompanied by a loss of global temporal coordination, with specific patterns of decoupling between local regions and global activity differentiating among various unconscious states. Methods Functional magnetic resonance imaging global signals were studied in physiologic, pharmacologic, and pathologic states of unconsciousness in human natural sleep (n = 9), propofol anesthesia (humans, n = 14; male rats, n = 12), and neuropathological patients (n = 21). The global signal amplitude as well as the correlation between global signal and signals of local voxels were quantified. The former reflects the net strength of global temporal coordination, and the latter yields global signal topography. Results A profound reduction of global signal amplitude was seen consistently across the various unconscious states: wakefulness (median [1st, 3rd quartile], 0.46 [0.21, 0.50]) versus non-rapid eye movement stage 3 of sleep (0.30 [0.24, 0.32]; P = 0.035), wakefulness (0.36 [0.31, 0.42]) versus general anesthesia (0.25 [0.21, 0.28]; P = 0.001), healthy controls (0.30 [0.27, 0.37]) versus unresponsive wakefulness syndrome (0.22 [0.15, 0.24]; P < 0.001), and low dose (0.07 [0.06, 0.08]) versus high dose of propofol (0.04 [0.03, 0.05]; P = 0.028) in rats. Furthermore, non-rapid eye movement stage 3 of sleep was characterized by a decoupling of sensory and attention networks from the global network. General anesthesia and unresponsive wakefulness syndrome were characterized by a dissociation of the majority of functional networks from the global network. This decoupling, however, was dominated by distinct neuroanatomic foci (e.g., precuneus and anterior cingulate cortices). Conclusions The global temporal coordination of various modules across the brain may distinguish the coarse-grained state of consciousness versus unconsciousness, while the relationship between the global and local signals may define the particular qualities of a particular unconscious state. Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3