Tailoring epilepsy treatment: personalized micro-physiological systems illuminate individual drug responses

Author:

Shariff Sanobar12,Kantawala Burhan12,Xochitun Gopar Franco William13,Dejene Ayele Nitsuh14,Munyangaju Isabelle15,Esam Alzain Fatima15,Nazir Abubakar16,Wojtara Madga1,Uwishema Olivier178

Affiliation:

1. Oli Health Magazine Organization, Research and Education, Kigali, Rwanda

2. Yerevan State Medical University, Yerevan, Armenia

3. University of Guadalajara, Guadalajara, Mexico

4. Department of Internal Medicine, Faculty of Medicine, Wolkite University, Wolkite, Ethiopia

5. College of Medicine and General Surgery, Sudan University Of Science and Technology, Khartoum, Sudan

6. Department of Medicine, King Edward Medical University, Lahore, Pakistan

7. Clinton Global Initiative University, New York, NY

8. Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey

Abstract

Introduction: Approximately 50 million people worldwide have epilepsy, with many not achieving seizure freedom. Organ-on-chip technology, which mimics organ-level physiology, could revolutionize drug development for epilepsy by replacing animal models in preclinical studies. The authors’ goal is to determine if customized micro-physiological systems can lead to tailored drug treatments for epileptic patients. Materials and methods: A comprehensive literature search was conducted utilizing various databases, including PubMed, Ebscohost, Medline, and the National Library of Medicine, using a predetermined search strategy. The authors focused on articles that addressed the role of personalized micro-physiological systems in individual drug responses and articles that discussed different types of epilepsy, diagnosis, and current treatment options. Additionally, articles that explored the components and design considerations of micro-physiological systems were reviewed to identify challenges and opportunities in drug development for challenging epilepsy cases. Results: The micro-physiological system offers a more accurate and cost-effective alternative to traditional models for assessing drug effects, toxicities, and disease mechanisms. Nevertheless, designing patient-specific models presents critical considerations, including the integration of analytical biosensors and patient-derived cells, while addressing regulatory, material, and biological complexities. Material selection, standardization, integration of vascular systems, cost efficiency, real-time monitoring, and ethical considerations are also crucial to the successful use of this technology in drug development. Conclusion: The future of organ-on-chip technology holds great promise, with the potential to integrate artificial intelligence and machine learning for personalized treatment of epileptic patients.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3