Perceptual Doping: An Audiovisual Facilitation Effect on Auditory Speech Processing, From Phonetic Feature Extraction to Sentence Identification in Noise

Author:

Moradi Shahram1,Lidestam Björn2,Ning Ng Elaine Hoi13,Danielsson Henrik1,Rönnberg Jerker1

Affiliation:

1. Linnaeus Centre HEAD, Swedish Institute for Disability Research, Department of Behavioral Sciences and Learning, Linköping University, Linköping, Sweden

2. Department of Behavioral Sciences and Learning, Linköping University, Linköping, Sweden

3. Oticon A/S, Smørum, Denmark.

Abstract

Objective: We have previously shown that the gain provided by prior audiovisual (AV) speech exposure for subsequent auditory (A) sentence identification in noise is relatively larger than that provided by prior A speech exposure. We have called this effect “perceptual doping.” Specifically, prior AV speech processing dopes (recalibrates) the phonological and lexical maps in the mental lexicon, which facilitates subsequent phonological and lexical access in the A modality, separately from other learning and priming effects. In this article, we use data from the n200 study and aim to replicate and extend the perceptual doping effect using two different A and two different AV speech tasks and a larger sample than in our previous studies. Design: The participants were 200 hearing aid users with bilateral, symmetrical, mild-to-severe sensorineural hearing loss. There were four speech tasks in the n200 study that were presented in both A and AV modalities (gated consonants, gated vowels, vowel duration discrimination, and sentence identification in noise tasks). The modality order of speech presentation was counterbalanced across participants: half of the participants completed the A modality first and the AV modality second (A1–AV2), and the other half completed the AV modality and then the A modality (AV1–A2). Based on the perceptual doping hypothesis, which assumes that the gain of prior AV exposure will be relatively larger relative to that of prior A exposure for subsequent processing of speech stimuli, we predicted that the mean A scores in the AV1–A2 modality order would be better than the mean A scores in the A1–AV2 modality order. We therefore expected a significant difference in terms of the identification of A speech stimuli between the two modality orders (A1 versus A2). As prior A exposure provides a smaller gain than AV exposure, we also predicted that the difference in AV speech scores between the two modality orders (AV1 versus AV2) may not be statistically significantly different. Results: In the gated consonant and vowel tasks and the vowel duration discrimination task, there were significant differences in A performance of speech stimuli between the two modality orders. The participants’ mean A performance was better in the AV1–A2 than in the A1–AV2 modality order (i.e., after AV processing). In terms of mean AV performance, no significant difference was observed between the two orders. In the sentence identification in noise task, a significant difference in the A identification of speech stimuli between the two orders was observed (A1 versus A2). In addition, a significant difference in the AV identification of speech stimuli between the two orders was also observed (AV1 versus AV2). This finding was most likely because of a procedural learning effect due to the greater complexity of the sentence materials or a combination of procedural learning and perceptual learning due to the presentation of sentential materials in noisy conditions. Conclusions: The findings of the present study support the perceptual doping hypothesis, as prior AV relative to A speech exposure resulted in a larger gain for the subsequent processing of speech stimuli. For complex speech stimuli that were presented in degraded listening conditions, a procedural learning effect (or a combination of procedural learning and perceptual learning effects) also facilitated the identification of speech stimuli, irrespective of whether the prior modality was A or AV.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3