The three-dimensional weakly supervised deep learning algorithm for traumatic splenic injury detection and sequential localization: an experimental study

Author:

Cheng Chi-Tung12ORCID,Lin Hou-Shian12,Hsu Chih-Po12ORCID,Chen Huan-Wu32,Huang Jen-Fu12ORCID,Fu Chih-Yuan12ORCID,Hsieh Chi-Hsun12ORCID,Yeh Chun-Nan42ORCID,Chung I-Fang5ORCID,Liao Chien-Hung162ORCID

Affiliation:

1. Department of Trauma and Emergency Surgery

2. Chang Gung University, Taoyuan

3. Department of Medical Imaging and Intervention

4. Department of General Surgery

5. Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan, Republic of China

6. Center for Artificial Intelligence in Medicine, Chang Gung Memorial Hospital, Linkou

Abstract

Background: Splenic injury is the most common solid visceral injury in blunt abdominal trauma, and high-resolution abdominal computed tomography (CT) can adequately detect the injury. However, these lethal injuries sometimes have been overlooked in current practice. Deep learning (DL) algorithms have proven their capabilities in detecting abnormal findings in medical images. The aim of this study is to develop a three-dimensional, weakly supervised DL algorithm for detecting splenic injury on abdominal CT using a sequential localization and classification approach. Material and methods: The dataset was collected in a tertiary trauma center on 600 patients who underwent abdominal CT between 2008 and 2018, half of whom had splenic injuries. The images were split into development and test datasets at a 4 : 1 ratio. A two-step DL algorithm, including localization and classification models, was constructed to identify the splenic injury. Model performance was evaluated using the area under the receiver operating characteristic curve (AUROC), accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). Grad-CAM (Gradient-weighted Class Activation Mapping) heatmaps from the test set were visually assessed. To validate the algorithm, we also collected images from another hospital to serve as external validation data. Results: A total of 480 patients, 50% of whom had spleen injuries, were included in the development dataset, and the rest were included in the test dataset. All patients underwent contrast-enhanced abdominal CT in the emergency room. The automatic two-step EfficientNet model detected splenic injury with an AUROC of 0.901 (95% CI: 0.836–0.953). At the maximum Youden index, the accuracy, sensitivity, specificity, PPV, and NPV were 0.88, 0.81, 0.92, 0.91, and 0.83, respectively. The heatmap identified 96.3% of splenic injury sites in true positive cases. The algorithm achieved a sensitivity of 0.92 for detecting trauma in the external validation cohort, with an acceptable accuracy of 0.80. Conclusions: The DL model can identify splenic injury on CT, and further application in trauma scenarios is possible.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

General Medicine,Surgery

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3