p16 INK4A drives nonalcoholic fatty liver disease phenotypes in high fat diet fed mice through biliary E2F1/FOXO1/IGF-1 signaling

Author:

Kundu Debjyoti1ORCID,Kennedy Lindsey12ORCID,Zhou Tianhao1ORCID,Ekser Burcin3ORCID,Meadows Vik1ORCID,Sybenga Amelia4,Kyritsi Konstantina1,Chen Lixian1ORCID,Ceci Ludovica15ORCID,Wu Nan1ORCID,Wu Chaodong6ORCID,Glaser Shannon7ORCID,Carpino Guido5ORCID,Onori Paolo5,Gaudio Eugenio5ORCID,Alpini Gianfranco12,Francis Heather12

Affiliation:

1. Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine Research, Indianapolis, Indiana, USA

2. Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, USA

3. Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA

4. UVM Health Network, Burlington, Vermont, USA

5. Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy

6. Department of Nutrition, Texas A&M University, College Station, Texas, USA

7. Texas A&M University School of Medicine, College Station, Texas, USA

Abstract

Background and Aims: NAFLD is characterized by steatosis, hepatic inflammation, and fibrosis, which can develop into NASH. Patients with NAFLD/NASH have increased ductular reaction (DR) and biliary senescence. High fat/high cholesterol diet feeding increases biliary senescence, DR, and biliary insulin-like growth factor-1 (IGF-1) expression in mice. p16/IGF-1 converges with fork-head box transcription factor O1 (FOXO1) through E2F1. We evaluated p16 inhibition on NAFLD phenotypes and biliary E2F1/FOXO1/IGF-1 signaling. Approach and Results: 4-week wild-type (C57BL/6J) male mice were fed a control diet (CD) or high fat/high cholesterol diet and received either p16 or control Vivo Morpholino (VM) by tail vein injection 2× during the 16th week of feeding. We confirmed p16 knockdown and examined: (i) NAFLD phenotypes; (ii) DR and biliary senescence; (iii) serum metabolites; and (iv) biliary E2F1/FOXO1/IGF-1 signaling. Human normal, NAFLD, and NASH liver samples and isolated cholangiocytes treated with control or p16 VM were evaluated for p16/E2F1/FOXO1/IGF-1 signaling. p16 VM treatment reduced cholangiocyte and hepatocyte p16. In wild-type high fat/high cholesterol diet mice with control VM, there were increased (i) NAFLD phenotypes; (ii) DR and biliary senescence; (iii) serum metabolites; and (iv) biliary E2F1/FOXO1/IGF-1 signaling; however, p16 VM treatment reduced these parameters. Biliary E2F1/FOX-O1/IGF-1 signaling increased in human NAFLD/NASH but was blocked by p16 VM. In vitro, p16 VM reduced biliary E2f1 and Foxo1 transcription by inhibiting RNA pol II binding and E2F1 binding at the Foxo1 locus, respectively. Inhibition of E2F1 reduced biliary FOXO1 in vitro. Conclusion: Attenuating hepatic p16 expression may be a therapeutic approach for improving NAFLD/NASH phenotypes.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Hepatology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3