The Relation between Cerebral Metabolic Rate and Ischemic Depolarization

Author:

Nakashima Ken,Todd Michael M.,Warner David S.

Abstract

Background Reductions in cerebral metabolic rate may increase the brain's tolerance of ischemia. However, outcome studies suggest that reductions in cerebral metabolic rate produced by anesthetics and by hypothermia may not be equally efficacious. To examine this question, we measured the effects of hypothermia, pentobarbital, and isoflurane on the cerebral metabolic rate for glucose (CMRG) and on the time to the loss of normal membrane ion gradients (terminal ischemic depolarization) of the cortex during complete global ischemia. Methods As pericranial temperature was varied between 39 and 25 degrees C in normocapnic halothane-anesthetized rats, CMRG (using 14C-deoxyglucose) or the time to depolarization (using a glass microelectrode in the cortex) after a K(+)-induced cardiac arrest was measured. In other studies, CMRG and depolarization times were measured in normothermic animals (37.7 +/- 0.2 degrees C) anesthetized with high-dose pentobarbital or isoflurane (both producing burst suppression on the electroencephalogram) or in halothane-anesthetized animals whose temperatures were reduced to 27.4 +/- 0.3 degrees C. These three states were designed to produce equivalent CMRG values. Results As temperature was reduced from 39 to 25 degrees C, CMRG decreased from 66 to 21 microM.100 g-1.min-1 (Q10 = 2.30), and depolarization times increased from 76 to 326 s. In similarly anesthetized animals at approximately 27 degrees C, CMRG was 32 +/- 4 microM.100 g-1.min-1 (mean +/- SD), whereas in normothermic pentobarbital- and isoflurane-anesthetized rats, CMRG values were 33 +/- 3 and 37 +/- 4 microM.100 g-1.min-1, respectively (P = 0.072 by one-way analysis of variance). Despite these similar metabolic rates, the times to depolarization were markedly different: for hypothermia it was 253 +/- 29 s, for pentobarbital 109 +/- 24 s, and for isoflurane 130 +/- 28 s (P < 0.0001). Conclusions The time to terminal depolarization is believed to be a measure of the rate at which energy stores are depleted. In this study there was a strong correlation between hypothermic reductions in CMRG and increases in the time to depolarization. This finding supports the belief that metabolic suppression may offer some cerebral protection. However, equivalent reductions in CMRG produced by hypothermia and by anesthesia were not equivalent in their effects on membrane failure. Whether hypothermia slows energy depletion by some unique mechanism or directly retards depolarization is unknown.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference45 articles.

Cited by 97 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Intraoperative Neurophysiological Monitoring for Intracranial Aneurysm Surgery;Koht, Sloan, Toleikis's Monitoring the Nervous System for Anesthesiologists and Other Health Care Professionals;2022-12-01

2. Spinal Cord Protection in Thoracic Aortic Surgery;Surgical Management of Aortic Pathology;2019

3. Protection of Dexmedetomidine Against Ischemia/Reperfusion-Induced Apoptotic Insults to Neuronal Cells Occurs Via an Intrinsic Mitochondria-Dependent Pathway;Journal of Cellular Biochemistry;2017-05-16

4. Therapeutic hypothermia protocols;Handbook of Clinical Neurology;2017

5. Nondrug Treatment for Refractory Status Epilepticus;Refractory Status Epilepticus;2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3