Prolonged Regional Nerve Blockade

Author:

Curley Joanne,Castillo Jenny,Hotz Joyce,Uezono Megumi,Hernandez Sonia,Lim Jeong-Ok,Tigner Joseph,Chasin Mark,Langer Robert,Berde Charles

Abstract

Background Biodegradable microspheres are a useful method of drug delivery because they are both injectable and biodegradable, eliminating the need for surgical implantation or removal. Previous work has characterized implantable preparations of local anesthetics in polymer pellets for prolonged regional anesthesia. In this article, the authors characterize injectable suspensions of bupivacaine-polymer microspheres and examine whether they can produce prolonged blockade of the sciatic nerve in rats. Methods Microspheres were prepared using polylactic-co-glycolic acid polymers loaded with 75% w/w bupivacaine by a solvent evaporation method. Bupivacaine release from microspheres was determined in vitro by ultraviolet spectroscopy and scintillation counting. Sensory and motor blockade of the rat sciatic nerve were assessed in vivo after injection of microsphere suspensions. Results Depending on the type of microspheres, the dose, and the additive used, mean duration of sciatic nerve block ranged from 10 h to 5.5 days. Incorporation of 0.05% w/w dexamethasone into the microspheres resulted in significant prolongation of block (up to 13-fold), and only preparations that contained dexamethasone produced blocks lasting beyond 1 day. Bupivacaine was released in a controlled manner in vitro. Dexamethasone does not substantially slow bupivacaine release from microspheres in vitro. Conclusions Prolonged percutaneous blockade of peripheral nerves is feasible. The recovery from blockade is complete, and plasma bupivacaine levels are far below the range associated with systemic toxicity. The mechanisms underlying the dexamethasone block-prolonging effect are under investigation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference27 articles.

Cited by 178 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3