Isoflurane Alters Energy Substrate Metabolism to Preserve Mechanical Function in Isolated Rat Hearts following Prolonged No-Flow Hypothermic Storage

Author:

Finegan Barry A.1,Gandhi Manoj2,Cohen Matthew R.3,Legatt Donald4,Clanachan Alexander S.5

Affiliation:

1. Professor.

2. Research Associate.

3. Resident, Departments of Anesthesiology and Pain Medicine.

4. Clinical Professor, Departments of Laboratory Medicine and Pathology.

5. Professor, Department of Pharmacology.

Abstract

Background Isoflurane enhances mechanical function in hearts subject to normothermic global or regional ischemia. The authors examined the effectiveness of isoflurane in preserving mechanical function in hearts subjected to cardioplegic arrest and prolonged hypothermic no-flow storage. The role of isoflurane in altering myocardial glucose metabolism during storage and reperfusion during these conditions and the contribution of adenosine triphosphate-sensitive potassium (K(atp)) channel activation in mediating the functional and metabolic effects of isoflurane preconditioning was determined. Methods Isolated working rat hearts were subjected to cardioplegic arrest with St. Thomas' II solution, hypothermic no-flow storage for 8 h, and subsequent aerobic reperfusion. The consequences of isoflurane treatment were assessed during the following conditions: (1) isoflurane exposure before and during storage; (2) brief isoflurane exposure during early nonworking poststorage reperfusion; and (3) isoflurane preconditioning before storage. The selective mitochondrial and sarcolemmal K(atp) channel antagonists, 5-hydroxydecanoate and HMR 1098, respectively, were used to assess the role of K(atp) channel activation on glycogen consumption during storage in isoflurane-preconditioned hearts. Results Isoflurane enhanced recovery of mechanical function if present before and during storage. Isoflurane preconditioning was also protective. Isoflurane reduced glycogen consumption during storage under the aforementioned circumstances. Storage of isoflurane-preconditioned hearts in the presence of 5-hydroxydecanoate prevented the reduction in glycogen consumption during storage and abolished the beneficial effect of isoflurane preconditioning on recovery of mechanical function. Conclusions Isoflurane provides additive protection of hearts subject to cardioplegic arrest and prolonged hypothermic no-flow storage and favorably alters energy substrate metabolism by modulating glycolysis during ischemia. The effects of isoflurane preconditioning on glycolysis during hypothermic no-flow storage appears to be associated with activation of mitochondrial K(atp) channels.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference40 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3