Influence of GABAAReceptor γ2Splice Variants on Receptor Kinetics and Isoflurane Modulation

Author:

Benkwitz Claudia1,Banks Matthew I.2,Pearce Robert A.3

Affiliation:

1. Resident and Research Fellow, Department of Anesthesiology, University of Wisconsin and Department of Anesthesiology, University of Wuerzburg, Wuerzburg, Germany.

2. Assistant Professor.

3. Professor, Department of Anesthesiology, University of Wisconsin.

Abstract

Background Gamma-aminobutyric acid type A (GABAA) receptors, the major inhibitory receptors in the brain, are important targets of many drugs, including general anesthetics. These compounds exert multiple effects on GABAA receptors, including direct activation, prolongation of deactivation kinetics, and reduction of inhibitory postsynaptic current amplitudes. However, the degree to which these actions occur differs for different agents and synapses, possibly because of subunit-specific effects on postsynaptic receptors. In contrast to benzodiazepines and intravenous anesthetics, there is little information available about the subunit dependency of actions of volatile anesthetics. Therefore, the authors studied in detail the effects of isoflurane on recombinant GABAA receptors composed of several different subunit combinations. Methods Human embryonic kidney 293 cells were transiently transfected with rat complementary DNAs of alpha1beta2, alpha1beta2gamma2L, alpha1beta2gamma2S, alpha5beta3, or alpha5beta3gamma2S subunits. Using rapid application and whole cell patch clamp techniques, cells were exposed to 10- and 2,000-ms pulses of gamma-aminobutyric acid (1 mm) in the presence or absence of isoflurane (0.25, 0.5, 1.0 mm). Anesthetic effects on decay kinetics, peak amplitude, net charge transfer and rise time were measured. Statistical significance was assessed using the Student t test or one-way analysis of variance followed by the Tukey post hoc test. Results Under control conditions, incorporation of a gamma2 subunit conferred faster deactivation kinetics and reduced desensitization. Isoflurane slowed deactivation, enhanced desensitization, and reduced peak current amplitude in alphabeta receptors. Coexpression with a gamma2 subunit caused these effects of isoflurane to be substantially reduced or abolished. Although the two gamma2 splice variants imparted qualitatively similar macroscopic kinetic properties, there were significant quantitative differences between effects of isoflurane on deactivation and peak current amplitude in gamma2S- versus gamma2L-containing receptors. The net charge transfer resulting from brief pulses of gamma-aminobutyric acid was decreased by isoflurane in alphabeta but increased in alphabetagamma receptors. Conclusions The results indicate that subunit composition does substantially influence modulation of GABAA receptors by isoflurane. Specifically, the presence of a gamma2 subunit and the identity of its splice variant are important factors in determining physiologic and pharmacologic properties. These results may have functional implications in understanding how anesthetic effects on specific types of GABAA receptors in the brain contribute to changes in brain function and behavior.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference68 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3