Comparative Contractile Effects of Halothane and Sevoflurane in Rat Aorta

Author:

Vinh Vu Huu1,Enoki Taijiro2,Hirata Shinichi3,Toda Hiroshi2,Kakuyama Masahiro2,Nakamura Kumi4,Fukuda Kazuhiko5

Affiliation:

1. Graduate Student in Anesthesia, Kyoto University Faculty of Medicine, Kyoto, Japan.

2. Assistant of Anesthesia, Kyoto University Hospital, Kyoto, Japan.

3. Chief Anesthesiologist, Takashima General Hospital, Shiga, Japan.

4. Chief Anesthesiologist, Kyoto City Hospital, Kyoto, Japan.

5. Professor and Chair of Anesthesia, Kyoto University Hospital, Kyoto, Japan.

Abstract

Background Volatile anesthetic agents have been shown to have contractile effects in vascular tissues during specific conditions. This study compared contractile effects of halothane and sevoflurane in rat aorta treated with verapamil. This study also tried to elucidate the mechanism of the contraction. Methods Endothelium-denuded rat thoracic aorta was used for recording of isometric tension and measurement of influx of 45Ca2+. All experiments were performed in the presence of verapamil. In recording of tension, rings were precontracted with a submaximum dose of phenylephrine, followed by exposure to halothane or sevoflurane. For measurement of influx of 45Ca2+, rat aortic strips were exposed to phenylephrine and then to additional halothane or sevoflurane. Influx of Ca2+ was estimated by incubating the strips in 45Ca2+-labeled solution for 2 min. Results Halothane (0.5-4.0%) induced contraction in a dose-dependent manner, whereas sevoflurane (1-4%) had no effect on tension. Influx of 45Ca2+ was strongly enhanced by halothane at 1% and 2%, but only slightly at 4%, and was not affected by 1-4% sevoflurane. SK&F 96365, a blocker of voltage-independent Ca2+ channels, abolished contraction and influx of 45Ca2+ by 1% halothane. Depletion of Ca2+ from the sarcoplasmic reticulum with ryanodine or thapsigargin reduced the contraction induced by halothane at 4% but not that at 1% and 2%. Conclusion Halothane is suggested to cause contraction by enhancing influx of Ca2+ via voltage-independent Ca2+ channels at concentrations up to 2% and by inducing release of Ca2+ at 4%. Sevoflurane (1-4%) is devoid of these contractile effects.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference36 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3