Statistical Method for Predicting When Patients Should Be Ready on the Day of Surgery

Author:

Dexter Franklin1,Traub Rodney D.2

Affiliation:

1. Associate Professor, Department of Anesthesia, The University of Iowa.

2. Associate Professor, College of Business Administration, North Dakota State University.

Abstract

Background Previously, mathematical theory was developed for determining when a patient should be ready for surgery on the day of surgery. To apply this theory, a method is needed to predict the earliest start time of the case. Methods The authors calculated a time estimate such that the probability is 0.05 that the preceding case in the patient's operating room (OR) will be finished before the patient is ready for surgery. This implies there will be a 5% risk of OR personnel being idle and waiting for the patient. This 0. 05 value was chosen by considering the relative cost valuation of an average patient's time to that of an average surgical team based on national salary data. Case duration data from a surgical services information system were used to test different statistical methods to estimate earliest start times. Results Simulations found that 0.05 prediction bounds, calculated assuming case durations followed log-normal distributions, achieved actual risks for the OR staff to wait for patients of 0.050 to 0.053 (SEM = 0.001). Nonparametric prediction bounds performed no better than the parametric method. Having patients ready a fixed number of hours before the scheduled starts of their operations is not reliable. If the preceding case in an OR had been underway for 0.5 to 1.5 h, the parametric 0.05 prediction bounds for the time remaining achieved actual risks for OR staff waiting of 0.055 to 0.058 (SEM = 0.001). Conclusion The earliest start time of a case can be estimated using the 0.05 prediction bound for the duration of the preceding case. The authors show 0.05 prediction bounds can be estimated accurately assuming that case durations follow log-normal distributions.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference21 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3