Statistical Modeling to Predict Elective Surgery Time

Author:

Wright Ian H.,Kooperberg Charles,Bonar Barbara A.,Bashein Gerard

Abstract

Background Accurate estimation of operating times is a prerequisite for the efficient scheduling of the operating suite. The authors, in this study, sought to compare surgeons' time estimates for elective cases with those of commercial scheduling software, and to ascertain whether improvements could be made by regression modeling. Methods The study was conducted at the University of Washington Medical Center in three phases. Phase 1 retrospectively reviewed surgeons' time estimates and the scheduling system's estimates throughout 1 yr. In phase 2, data were collected prospectively from participating surgeons by means of a data entry form completed at the time of scheduling elective cases. Data included the procedure code, estimated operating time, estimated case difficulty, and potential factors that might affect the duration. In phase 3, identical data were collected from five selected surgeons by personal interview. Results In phase 1, 26 of 43 surgeons provided significantly better estimates than did the scheduling system (P < 0.01), and no surgeon was significantly worse, although the absolute errors were large (34% of 157 min average case length). In phase 2, modeling improved the accuracy of the surgeons' estimates by 11.5%, compared with the scheduling system. In phase 3, applying the model from phase 2 improved the accuracy of the surgeons' estimates by 18.2%. Conclusions Surgeons provide more accurate time estimates than does the scheduling software as it is used in our institution. Regression modeling effects modest improvements in accuracy. Further improvements would be likely if the hospital information system could provide timely historical data and feedback to the surgeons.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference21 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3