Permeability of Injured and Intact Peripheral Nerves and Dorsal Root Ganglia

Author:

Abram Stephen E.1,Yi Johnny2,Fuchs Andreas3,Hogan Quinn H.1

Affiliation:

1. Professor, Department of Anesthesiology.

2. Medical Student, Medical College of Wisconsin.

3. Staff Anesthesiologist, Department of Anesthesiology and Intensive Care Medicine, Medical University of Graz, Graz, Austria.

Abstract

Background Nerve injury that produces behavioral changes of allodynia and hyperalgesia in animals is associated with electrophysiologic changes in dorsal root ganglion (DRG) cells. The introduction of drugs into the DRG or the peripheral nerve that alter calcium, sodium, or potassium channel activity may be of therapeutic benefit after nerve injury. For this reason, the authors sought to determine whether drugs that do not ordinarily cross the blood-nerve barrier will enter the DRG after intravenous or regional injection and to determine whether nerve injury alters drug access to DRGs or peripheral nerves. Methods Both intact and spinal nerve-ligated rats were injected with sodium fluorescein by intravenous, intrathecal, peri-DRG, perisciatic, and epidural routes. DRG, sciatic nerve, and spinal cord tissues were harvested and frozen, and histologic sections were analyzed quantitatively for tissue fluorescence. Results In both intact and nerve-injured animals, fluorescein accumulated in DRGs after intravenous, peri-DRG, and epidural injection. There was accumulation in the proximal portion of the ganglion after intrathecal injection. Minimal amounts of fluorescein were found in the sciatic nerve in intact animals after intravenous or perineural injection, but substantial amounts were found in some nerve fascicles in nerve-injured animals after both intravenous and perineural injection. There was almost no fluorescein found in the spinal cord except after intrathecal administration. Conclusions In both intact and nerve-injured animals, fluorescein accumulates freely in the DRG after intravenous, epidural, or paravertebral injection. The sciatic nerve is relatively impermeable to fluorescein, but access by either systemic or regional injection is enhanced after nerve injury.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference23 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3