Abnormally Increased Effective Connectivity of the Periaqueductal Gray in Migraine Without Aura Patients

Author:

Liu Kun1,Cheng Jinming2,Cao Yungang3,Chen Keyang2,Li Yan2,Zhang Xi4,Dong LiPeng2,Wang Zhihong3,Liu Xiaozheng1

Affiliation:

1. Department of Radiology of the Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang

2. Department of Neurology of the Hebei General Hospital

3. Department of Neurology of the Second Affiliated hospital, Hebei Medical University, Shijiazhuang

4. Department of Neurology of Xingtai People’s Hospital, Xingtai, Hebei, China

Abstract

Objectives: The periaqueductal gray (PAG) is a key region in the descending pain modulatory system. We applied a Granger causality analysis-based approach to examine resting-state effective connectivity of the bilateral PAG regions in migraine patients without aura (MwoA). Materials and Methods: Resting-state functional magnetic resonance imaging data were obtained from 28 MwoA patients and 17 healthy controls. The effective connectivity of the bilateral PAG was characterized using a voxel-wised Granger causality analysis method. The resulting effective connectivity measurements were assessed for correlations with other clinical features. Results: Compared with the healthy controls, MwoA patients showed increased effective connectivity from the left PAG to the left anterior cingulate gyrus and right postcentral gyrus. Meanwhile, MwoA patients also showed increased effective connectivity from the right PAG to the left precentral gyrus and increased effective connectivity from the left caudate and right middle occipital gyrus to the right PAG. Discussion: Abnormally increased effective connectivity between PAG and limbic system, primary sensorimotor cortex, and visual cortex may play a key role in neuropathological features, perception, and affection of MwoA. The current study provides further insights into the complex scenario of MwoA mechanisms.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3