Artificial Intelligence–Based Indocyanine Green Lymphography Pattern Classification for Management of Lymphatic Disease

Author:

Ozmen Berk B.1,Pandey Sonia K.1,Schwarz Graham S.1

Affiliation:

1. From the Department of Plastic Surgery, Cleveland Clinic, Cleveland, Ohio.

Abstract

Background: Lymphedema diagnosis relies on effective imaging of the lymphatic system. Indocyanine green (ICG) lymphography has become an essential diagnostic tool, but globally accepted protocols and objective analysis methods are lacking. In this study, we aimed to investigate artificial intelligence (AI), specifically convolutional neural networks, to categorize ICG lymphography images patterns into linear, reticular, splash, stardust, and diffuse. Methods: A dataset composed of 68 ICG lymphography images was compiled and labeled according to five recognized pattern types: linear, reticular, splash, stardust, and diffuse. A convolutional neural network model, using MobileNetV2 and TensorFlow, was developed and coded in Python for pattern classification. Results: The AI model achieved 97.78% accuracy and 0.0678 loss in categorizing images into five ICG lymphography patterns, demonstrating high potential for enhancing ICG lymphography interpretation. The high level of accuracy with a low loss achieved by our model demonstrates its effectiveness in pattern recognition with a high degree of precision. Conclusions: This study demonstrates that AI models can accurately classify ICG lymphography patterns. AI can assist in standardizing and automating the interpretation of ICG lymphographic imaging.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3