Innovating Flexor Tendon Repair Training with a Three-dimensional Printed Model

Author:

Boyajian Michael K.1,Davidson Amelia L.1,Molair Will1,Woo Albert S.2,Crozier Joseph W.2,Johnson James E.3,Bhatt Reena2,Danelson Kerry A.4,Argenta Anne1

Affiliation:

1. Department of Plastic and Reconstructive Surgery, Atrium Health at Wake Forest Baptist, Winston-Salem, N.C.

2. Department of Plastic and Reconstructive Surgery, Brown University, Providence, R.I.

3. Department of General Surgery, Atrium Health at Wake Forest Baptist, Winston-Salem, N.C.

4. Department of Orthopedic Surgery, Atrium Health at Wake Forest Baptist, Winston-Salem, N.C.

Abstract

Background: Flexor tendon repair is a technically demanding procedure, with functional outcome directly proportional to skillful execution. A repair must be strong to manage early mobilization and precise to allow for gliding through the tendon sheath. As a result, junior residents face a steep learning curve that may be mitigated by exposure to surgical simulators. Methods: To facilitate flexor tendon repair training, a surgical training device and accompanying instructional video were developed. Simulation workshops were held for junior orthopedic and plastic surgery residents (n = 11). To objectively assess validity of the curriculum, study participants performed cadaveric flexor tendon repairs before and after the workshop. Anonymous recordings of these repairs were graded by two certified hand surgeons. Additionally, a tensometer was used to measure strength of repair. Results: Model realism, educational utility, and overall usefulness rated high: 4.6 ± 0.52 95% confidence interval (CI) for realism, 4.9 ± 0.42 95% CI for device, 4.7 ± 0.96 95% CI for video, and 4.9 ± 0.66 95% CI overall. Subjective confidence increased after the training session (73% ranked “moderately” or “extremely”). Likewise, scores given by the surgeons grading the repairs improved for overall quality and time of repair (pre: 2.77 ± 0.61, post: 4.22 ± 0.56, P= 0.0002). Strength of repair did not change (P = 0.87). Conclusions: The proposed three-dimensional surgical simulator for flexor tendon repair is realistic and useful, with improved surgical technique and improved confidence demonstrated after use. This design can be three-dimensionally printed en masse and provide value to hand surgery training curriculum.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3