Anatomic Analysis of Masseteric-to-zygomatic Nerve Transfer in Rat and Pig Models

Author:

Millesi Elena12,Suchyta Marissa1,Wang Huan3,Mardini Samir1

Affiliation:

1. Division of Plastic and Reconstructive Surgery, Department of Surgery, Mayo Clinic, Rochester, Minn.

2. Division of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria

3. Department of Neurologic Surgery, Mayo Clinic, Rochester, Minn.

Abstract

Background: Nerve transfer from the masseteric branch of the trigeminal nerve is a widely performed procedure for facial reanimation. Despite achieving powerful muscle force, clinical and aesthetic results leave room for improvement. Preclinical animal models are invaluable to establishing new therapeutic approaches. This anatomical study aimed to establish a masseteric-to-zygomatic nerve transfer model in rats and pigs. Methods: The masseteric branch of the trigeminal nerve and the zygomatic branch of the facial nerve were dissected in 30 swine and 40 rat hemifaces. Both nerves were mobilized and approximated to achieve an overlap between the nerve ends. Over the course of dissecting both nerves, their anatomy, length, and branching pattern were documented. At the coaptation point, diameters of both nerves were measured, and samples were taken for neuromorphometric analysis. Results: Anatomic details and landmarks were described. Tension-free coaptation was possible in all rat and pig dissections. In rats, the masseteric branch had an average diameter of 0.36 mm (±0.06), and the zygomatic branch average diameter was 0.46 mm (±0.13). In pigs, the masseteric branch measured 0.52 (±0.16) mm and the zygomatic branch, 0.59 (±0.16) mm. No significant differences were found between the diameters and axon counts of both nerves in pigs. In rats, however, their diameters, axon counts, and fascicular areas were significantly different. Conclusion: Our study demonstrated the feasibility of direct masseteric-to-zygomatic nerve transfer in rats and pigs and provided general anatomic knowledge of both nerves.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Surgery,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3