Immunohistochemistry Detection of Histone H3 K27M Mutation in Human Glioma Tissue

Author:

Tarapore Rohinton S.1,Arain Shehla2,Blaine Elizabeth2,Hsiung Adam2,Melemed Allen S.1,Allen Joshua E.1

Affiliation:

1. Chimerix Inc., Durham, NC

2. NeoGenomics, Fort Myers, FL

Abstract

The presence of the histone 3 (H3) K27M mutation in diffuse midline glioma has implications for diagnosis, prognosis, and treatment, making rapid and accurate H3 K27M characterization vital for optimal treatment. This study evaluated an immunohistochemical assay using a commercially available monoclonal anti-H3 K27M in human central nervous system tumors. H3 K27M–positive glioma specimens were obtained from clinical sites with prior H3 K27M testing using local methods; negative control glioblastoma tissue was obtained from a tissue library. Specimens were stained with a rabbit anti-H3 K27M monoclonal antibody; slides were evaluated for the proportion of H3 K27M–positive tumor cells and staining intensity by a board-certified pathologist. H-score was calculated for each sample. Sensitivity, specificity, accuracy, repeatability, and reproducibility were evaluated. Fifty-one central nervous system specimens were stained (H3 K27M, n=41; H3 wild type, n=10). All H3 K27M-mutant specimens had positive nuclear staining, and most specimens had an H-score ≥150 (31/40, 77.5%). No nuclear staining occurred in H3 wild-type specimens; all cores in the normal tissue microarray were negative. Results were 100% sensitive, specific, and accurate for H3 K27M detection relative to local methods. Repeatability and reproducibility analyses were 100%, with a high degree of concordance for staining intensity. H3 K27M antigen was stable for at least 12 months at ambient temperature. Immunohistochemistry using a commercially available anti-H3 K27M monoclonal antibody provides a highly sensitive, specific, and stable method of establishing H3 K27M status in human glioma; this method may facilitate diagnosis in cases where sequencing is not feasible or available.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Medical Laboratory Technology,Histology,Pathology and Forensic Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3