Association of Merkel Cell Polyomavirus Status With p53, RB1, and PD-L1 Expression and Patient Prognosis in Merkel Cell Carcinomas: Clinical, Morphologic, and Immunohistochemical Evaluation of 17 Cases

Author:

Öğüt BetülORCID,Bayram Elif Kolay,İnan Mehmet Arda,Kestel Selin,Erdem Özlem

Abstract

Background: Merkel cell carcinoma (MCC) is a rare, aggressive, primary neuroendocrine carcinoma of the skin whose main risk factors are immunosuppression, UV radiation exposure, and Merkel cell polyomavirus. Programmed death-1/programmed death ligand-1 (PD-L1)-based immunotherapy is currently the first choice for treating patients with metastatic MCC. Methods: MCC biopsies (17) were evaluated for their nucleus and cytoplasm characteristics and growth patterns, as well as for intratumor lymphocytes, mitotic number, and lymphovascular invasion. Paraffin-embedded tissue samples of the biopsies were stained with MCPyV large T-antigen (LTag), RB1, p53, and PD-L1. Results: We observed MCPyV LTag expression in 9 out of the 17 tumors, and all 9 cases were positive for RB1 (P<0.000). p53 staining was not significantly correlated with MCPyV LTag. We observed no relationship between p53 expression and any other parameters, and PD-L1 expression was low in the MCC samples. We evaluated PD-L1 using both the combined positive score and tumor proportion score (TPS), and found that TPS was correlated with MCPyV LTag expression (P=0.016). Tumors with tumor-infiltrating lymphocytes showed a better prognosis than those without these lymphocytes (P=0.006). Discussion: Our data demonstrated that RB1 was effective for immunohistochemically investigating the MCPyV status of tumors. TPS was superior to the combined positive score in evaluating PD-L1 in MCC. Tumor-infiltrating lymphocytes were the only parameters that were associated with survival. Further studies with larger series are required to confirm these results.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Medical Laboratory Technology,Histology,Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3