Aspartate and Acetate Fuel Gastrointestinal Stromal Tumors Beyond the Warburg Effect

Author:

Lai Ying-Chieh12,Lin Gigin12,Ho Kung-Chu3,Lu Kuan-Ying12,Tsai Cheng-Kun2,Hung Cheng-Yu2,Yeh Ta-Sen4

Affiliation:

1. Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linko, Chang Gung University, Taoyuan, Taiwan

2. Department of Metabolomics Core Lab, Chang Gung Memorial Hospital at Linko, Chang Gung University, Taoyuan, Taiwan

3. Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital at Linko, Chang Gung University, Taoyuan, Taiwan

4. Department of Surgery, Chang Gung Memorial Hospital at Linko, Chang Gung University, Taoyuan, Taiwan.

Abstract

Background: Metabolic reprogramming is closely linked to the tumorigenesis and drug resistance of gastrointestinal stromal tumors (GISTs). Mapping the metabolic orbit of GISTs is a prerequisite if intervention against the metabolic vulnerability of refractory GISTs is desirable. Methods: A total of 43 patients with treatment-naïve GISTs who had undergone surgical resections were enrolled, on whom a metabolomics profile detected from surgical specimens was constructed based on the 1H-nuclear magnetic resonance (NMR) platform. The mRNA and protein levels of GLUT1, HK2, ACSS2, and FASN were assayed. Dual-tracer 18F-FDG/11C-acetate PET imaging was introduced before surgery in 15 patients. Results: 1H-NMR-based metabolomics revealed that GISTs were characterized by upregulation of glutamate, ascorbate, aspartate and glycine and downregulation of choline, creatine, glucose and glycerol. Bioinformatics analysis showed that the TCA cycle and alanine, aspartate, and glutamate metabolism were the two leading pathways. High- and nonhigh-risk (including intermediate-, low-, and very low-risk) GISTs preferentially displayed upregulation of HK2 and ACSS2, respectively, echoed by in vivo imaging that high- and nonhigh-risk GISTs preferentially exhibited higher uptake of 18F-FDG and 11C-acetate, respectively, while 18F-FDG and 11C-acetate were complementary to each other. Nuclear ACSS2 was exclusively identified in high-risk GISTs. Conclusion: We describe a metabolic landscape of GISTs that read aspartate as a de facto “oncometabolite,” which was replenished via the TCA cycle and alanine, aspartate, and glutamate metabolism. Glycolysis and ACSS2-mediated acetate metabolism competed and complemented fatty acid synthesis, although glycolysis remained an aggressive phenotype.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3