American College of Surgeons NSQIP Risk Calculator Accuracy Using a Machine Learning Algorithm Compared with Regression

Author:

Liu Yaoming1,Ko Clifford Y12,Hall Bruce L13,Cohen Mark E1

Affiliation:

1. From the Division of Research and Optimal Patient Care, American College of Surgeons, Chicago, IL (Liu, Ko, Hall, Cohen)

2. the Department of Surgery, University of California Los Angeles David Geffen School of Medicine and the VA Greater Los Angeles Healthcare System, Los Angeles, CA (Ko)

3. the Department of Surgery, Washington University in St. Louis; Center for Health Policy and the Olin Business School at Washington University in St Louis; John Cochran Veterans Affairs Medical Center; and BJC Healthcare, St Louis, MO (Hall).

Abstract

BACKGROUND: The American College of Surgeons NSQIP risk calculator (RC) uses regression to make predictions for fourteen 30-day surgical outcomes. While this approach provides accurate (discrimination and calibration) risk estimates, they might be improved by machine learning (ML). To investigate this possibility, accuracy for regression-based risk estimates were compared to estimates from an extreme gradient boosting (XGB)-ML algorithm. STUDY DESIGN: A cohort of 5,020,713 million NSQIP patient records was randomly divided into 80% for model construction and 20% for validation. Risk predictions using regression and XGB-ML were made for 13 RC binary 30-day surgical complications and one continuous outcome (length of stay [LOS]). For the binary outcomes, discrimination was evaluated using the area under the receiver operating characteristic curve (AUROC) and area under the precision recall curve (AUPRC), and calibration was evaluated using Hosmer–Lemeshow statistics. Mean squared error and a calibration curve analog were evaluated for the continuous LOS outcome. RESULTS: For every binary outcome, discrimination (AUROC and AUPRC) was slightly greater for XGB-ML than for regression (mean [across the outcomes] AUROC was 0.8299 vs 0.8251, and mean AUPRC was 0.1558 vs 0.1476, for XGB-ML and regression, respectively). For each outcome, miscalibration was greater (larger Hosmer–Lemeshow values) with regression; there was statistically significant miscalibration for all regression-based estimates, but only for 4 of 13 when XGB-ML was used. For LOS, mean squared error was lower for XGB-ML. CONCLUSIONS: XGB-ML provided more accurate risk estimates than regression in terms of discrimination and calibration. Differences in calibration between regression and XGB-ML were of substantial magnitude and support transitioning the RC to XGB-ML.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Surgery

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3