Training the Next Generation of Transplant Surgeons With a 3-Dimensional Trainer: A Pilot Study

Author:

Sanchez-Garcia Jorge1ORCID,Lopez-Verdugo Fidel1,Shorti Rami2,Krong Jake3,Zendejas Ivan1,Contreras Alan G.1,Botha Jean1,Rodriguez-Davalos Manuel I.14

Affiliation:

1. Liver Transplant Service, Intermountain Primary Children’s Hospital, Salt Lake City, UT.

2. Advanced Visualization Engineering, Intermountain Health, Salt Lake City, UT.

3. Transplant Research Department, Intermountain Medical Center, Salt Lake City, UT.

4. Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, UT.

Abstract

Background. In the United States, no published guidelines promote exposure to technical variants (ie, living donor or split liver) during transplant fellowship. Simulation with hands-on liver models may improve training in transplantation. This pilot study addressed 3 overall goals (material and model creation tools, recruitment rates and assessment of workload, and protocol adherence). Methods. A patient-specific hands-on liver model was constructed from clinical imaging, and it needed to be resilient and realistic. Multiple types of materials were tested between January 2020 and August 2022. Participants were recruited stepwise. A left lateral segmentectomy simulation was conducted between August 2022 and December 2022 to assess protocol adherence. Results. Digital anatomy 3-dimensional printing was considered the best option for the hands-on liver model. The recruitment rate was 100% and 47% for junior attendings and surgical residents, respectively. Ten participants were included and completed all the required surveys. Seven (70%) and 6 (60%) participants “agreed” that the overall quality of the model and the material were acceptable for surgical simulation. Five participants (50%) “agreed” that the training improved their surgical skills. Nine participants (90%) “strongly agreed” that similar sessions should be included in surgical training programs. Conclusions. Three-dimensional hands-on liver models have the advantage of tactile feedback and were rated favorably as a potential training tool. Study enrollment for further studies is possible with the support of leadership. Rigorous multicenter designs should be developed to measure the actual impact of 3-dimensional hands-on liver models on surgical training.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3