Induced Hippocampal Neuron Protection in an Optimized Gerbil Ischemia Model: Insult Thresholds for Tolerance Induction and Altered Gene Expression Defined by Ischemic Depolarization

Author:

Abe Hiroshi1,Nowak Thaddeus S.1

Affiliation:

1. Department of Neurology, University of Tennessee Health Science Center, Memphis, Tennessee, U.S.A.

Abstract

Preconditioning of hippocampal CA1 neurons was evaluated in a gerbil model of transient global ischemia using extracellular recording of DC potential shifts characteristic of ischemic depolarization to precisely define the duration of both priming and test insults. Brief ischemia resulting in depolarizations of 2.5 to 3.5 minutes consistently induced maximal tolerance (95% protection) against subsequent challenges 2 days later with an approximate doubling of the insult duration required for complete CA1 neuron loss from 6 to 12 minutes depolarization when evaluated 1 week after the test insult. Significant protection persisted at 2 months survival, although the apparent injury threshold regressed to approximately 8 minutes, indicating delayed progression of injury after longer test insults. In situ hybridization was used to evaluate depolarization thresholds for induction of mRNAs encoding the 70 kDa heat shock/stress protein, hsp72, as well as several immediate-early genes (c-fos, c-jun, junB, and junD). Immediate-early genes were prominently expressed after short insults inducing tolerance, whereas appreciable hsp72 induction only occurred after insults approaching the threshold for neuron injury. These results establish an ischemic preconditioning model with the predictability needed for mechanistic studies and demonstrate that prior transcriptional activation of the postischemic heat shock response is not required for expression of delayed tolerance.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Clinical Neurology,Neurology

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Searching basic units in memory traces: associative memory cells;F1000Research;2019-04-12

2. Associative Memory Cells in Memory Trace;Associative Memory Cells: Basic Units of Memory Trace;2019

3. Experimental Models and Strategies for Studying Associative Learning and Memory;Associative Memory Cells: Basic Units of Memory Trace;2019

4. History in the Study of Learning and Memory;Associative Memory Cells: Basic Units of Memory Trace;2019

5. Failure and rescue of preconditioning-induced neuroprotection in severe stroke-like insults;Neuropharmacology;2016-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3