A Reproducible Model of Middle Cerebral Artery Occlusion in Mice: Hemodynamic, Biochemical, and Magnetic Resonance Imaging

Author:

Hata Ryuji1,Mies Günter1,Wiessner Christoph1,Fritze Klaus1,Hesselbarth Daniel1,Brinker Gerrit1,Hossmann Konstantin-Alexander1

Affiliation:

1. Max-Planck-Institute for Neurological Research, Department of Experimental Neurology, Cologne, Germany

Abstract

A reproducible model of thread occlusion of the middle cerebral artery (MCA) was established in C57 Black/6J mice by matching the diameter of the thread to the weight of the animals. For this purpose, threads of different diameter (80 to 260 μm) were inserted into the MCA of animals of different weights (18 to 33 g), and the success of vascular occlusion was evaluated by imaging the ischemic territory on serial brain sections with carbon black. Successful occlusion of the MCA resulted in a linear relationship between body weight and thread diameter ( r = 0.46, P < 0.01), allowing precise selection of the appropriate thread size. Laser-Doppler measurements of CBF, neurological scoring, and 2,3,5-triphenyltetrazolium chloride staining confirmed that matching of animal weight and suture diameter produced consistent cerebral infarction. Three hours after MCA occlusion, imaging of ATP, tissue pH, and cerebral protein synthesis allowed differentiation between the central infarct core, in which ATP was depleted, and a peripheral penumbra with reduced protein synthesis and tissue acidosis but preserved ATP content. Perfusion deficits and ischemic tissue alterations could also be detected by perfusion- and diffusion-weighted magnetic resonance imaging, demonstrating the feasibility of dynamic evaluations of infarct evolution. The use of multiparametric imaging techniques in this improved MCA occlusion model opens the way for advanced pathophysiological studies of stroke in gene-manipulated animals.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Clinical Neurology,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3