Affiliation:
1. Department of Neurosurgery, University of Pennsylvania, School of Medicine, Philadelphia, Pennsylvania
2. Veterans Administration Medical Center, Philadelphia, Pennsylvania
3. Neuroscience Drug Discovery, Bristol-Myers Squibb Pharmaceutical Research Institute, Wallingford, Connecticut, U.S.A.
Abstract
Large-conductance, calcium-activated potassium (maxi-K) channels regulate neurotransmitter release and neuronal excitability, and openers of these channels have been shown to be neuroprotective in models of cerebral ischemia. The authors evaluated the effects of postinjury systemic administration of the maxi-K channel opener, BMS-204352, on behavioral and histologic outcome after lateral fluid percussion (FP) traumatic brain injury (TBI) in the rat. Anesthetized Sprague-Dawley rats (n = 142) were subjected to moderate FP brain injury (n = 88) or surgery without injury (n = 54) and were randomized to receive a bolus of 0.1 mg/kg BMS-204352 (n = 26, injured; n = 18, sham), 0.03 mg/kg BMS-204352 (n = 25, injured; n = 18, sham), or 2% dimethyl sulfoxide (DMSO) in polyethylene glycol (vehicle, n = 27, injured; n = 18, sham) at 10 minutes postinjury. One group of rats was tested for memory retention (Morris water maze) at 42 hours postinjury, then killed for evaluation of regional cerebral edema. A second group of injured/sham rats was assessed for neurologic motor function from 48 hours to 2 weeks postinjury and cortical lesion area. Administration of 0.1 mg/kg BMS-204352 improved neurologic motor function at 1 and 2 weeks postinjury ( P < 0.05) and reduced the extent of cerebral edema in the ipsilateral hippocampus, thalamus, and adjacent cortex ( P < 0.05). Administration of 0.03 mg/kg BMS-204352 significantly reduced cerebral edema in the ipsilateral thalamus ( P < 0.05). No effects on cognitive function or cortical tissue loss were observed with either dose. These results suggest that the novel maxi-K channel opener BMS-204352 may be selectively beneficial in the treatment of experimental TBI.
Subject
Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology
Cited by
73 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献