Measurement of Striatal and Extrastriatal Dopamine D1 Receptor Binding Potential With [11C]NNC 112 in Humans: Validation and Reproducibility

Author:

Abi-Dargham Anissa,Martinez Diana,Mawlawi Osama,Simpson Norman,Hwang Dah-Ren,Slifstein Mark,Anjilvel Satish,Pidcock Justine,Guo Ning-Ning,Lombardo Ilise,Mann J. John,Van Heertum Ronald,Foged Christian1,Halldin Christer2,Laruelle Marc

Affiliation:

1. Novo Nordisk, Malov, Denmark

2. Karolinska Institute, Stockholm, Sweden

Abstract

To evaluate the postulated role of extrastriatal D1 receptors in human cognition and psychopathology requires an accurate and reliable method for quantification of these receptors in the living human brain. [11C]NNC 112 is a promising novel radiotracer for positron emission tomography imaging of the D1 receptor. The goal of this study was to develop and evaluate methods to derive D1 receptor parameters in striatal and extrastriatal regions of the human brain with [11C]NNC 112. Six healthy volunteers were studied twice. Two methods of analysis (kinetic and graphical) were applied to 12 regions (neocortical, limbic, and subcortical regions) to derive four outcome measures: total distribution volume, distribution volume ratio, binding potential (BP), and specific-to-nonspecific equilibrium partition coefficient ( k3/ k4). Both kinetic and graphic analyses provided BP and k3/ k4 values in good agreement with the known distribution of D1 receptors (striatum > limbic regions = neocortical regions > thalamus). The identifiability of outcome measures derived by kinetic analysis was excellent. Time-stability analysis indicated that 90 minutes of data collection generated stable outcome measures. Derivation of BP and k3/ k4 by kinetic analysis was highly reliable, with intraclass correlation coefficients (ICCs) of 0.90 ± 0.06 (mean ± SD of 12 regions) and 0.84 ± 0.11, respectively. The reliability of these parameters derived by graphical analysis was lower, with ICCs of 0.72 ± 0.17 and 0.58 ± 0.21, respectively. Noise analysis revealed a noise-dependent bias in the graphical but not the kinetic analysis. In conclusion, kinetic analysis of [11C]NNC 112 uptake provides an appropriate method with which to derive D1 receptor parameters in regions with both high (striatal) and low (extrastriatal) D1 receptor density.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3