Experimental Closed Head Injury: Analysis of Neurological Outcome, Blood–Brain Barrier Dysfunction, Intracranial Neutrophil Infiltration, and Neuronal Cell Death in Mice Deficient in Genes for Pro-Inflammatory Cytokines

Author:

Stahel Philip F.,Shohami Esther1,Younis Firas M.1,Kariya Karin,Otto Viviane I.,Lenzlinger Philipp M.,Grosjean Maurice B.,Eugster Hans-Pietro2,Trentz Otmar,Kossmann Thomas,Morganti-Kossmann Maria C.

Affiliation:

1. Department of Pharmacology, Hebrew University, Hadassah Medical School, Jerusalem, Israel

2. Section of Clinical Immunology, Department of Medicine, University Hospital, Zurich, Switzerland

Abstract

Cytokines are important mediators of intracranial inflammation following traumatic brain injury (TBI). In the present study, the neurological impairment and mortality, blood-brain barrier (BBB) function, intracranial polymorphonuclear leukocyte (PMN) accumulation, and posttraumatic neuronal cell death were monitored in mice lacking the genes for tumor necrosis factor (TNF)/lymphotoxin-α (LT-α) (TNF/LT-α−/−) and interleukin-6 (IL-6) and in wild-type (WT) littermates subjected to experimental closed head injury (total n = 107). The posttraumatic mortality was significantly increased in TNF/LT-α−/− mice (40%; P < 0.02) compared with WT animals (10%). The IL-6−/− mice also showed a higher mortality (17%) than their WT littermates (5.6%), but the difference was not statistically significant ( P > 0.05). The neurological severity score was similar among all groups from 1 to 72 hours after trauma, whereas at 7 days, the TNF/LT-α−/− mice showed a tendency toward better neurological recovery than their WT littermates. Interestingly, neither the degree of BBB dysfunction nor the number of infiltrating PMNs in the injured hemisphere was different between WT and cytokine-deficient mice. Furthermore, the analysis of brain sections by in situ DNA nick end labeling (TUNEL histochemistry) at 24 hours and 7 days after head injury revealed a similar extent of posttraumatic intracranial cell death in all animals. These results show that the pathophysiological sequelae of TBI are not significantly altered in mice lacking the genes for the proinflammatory cytokines TNF, LT-α, and IL-6. Nevertheless, the increased posttraumatic mortality in TNF/LT-α-deficient mice suggests a protective effect of these cytokines by mechanisms that have not been elucidated yet.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3