Correlation of VEGF and Angiopoietin Expression with Disruption of Blood–Brain Barrier and Angiogenesis after Focal Cerebral Ischemia

Author:

Zhang Zheng Gang1,Zhang Li1,Tsang Wayne1,Soltanian-Zadeh Hamid2,Morris Daniel3,Zhang Ruilan1,Goussev Anton1,Powers Cecylia1,Yeich Thomas3,Chopp Michael14

Affiliation:

1. Department of Neurology, Henry Ford Health Sciences Center, Detroit

2. Department of Radiology, Henry Ford Health Sciences Center, Detroit

3. Department of Emergency Medicine, Henry Ford Health Sciences Center, Detroit

4. Department of Physics, Oakland University, Rochester, Michigan, U.S.A.

Abstract

In an effort to elucidate the molecular mechanisms underlying cerebral vascular alteration after stroke, the authors measured the spatial and temporal profiles of blood–brain barrier (BBB) leakage, angiogenesis, vascular endothelial growth factor (VEGF), associated receptors, and angiopoietins and receptors after embolic stroke in the rat. Two to four hours after onset of ischemia, VEGF mRNA increased, whereas angiopoietin 1 (Ang 1) mRNA decreased. Three-dimensional immunofluorescent analysis revealed spatial coincidence between increases of VEGF immunoreactivity and BBB leakage in the ischemic core. Two to 28 days after the onset of stroke, increased expression of VEGF/VEGF receptors and Ang/Tie2 was detected at the boundary of the ischemic lesion. Concurrently, enlarged and thin-walled vessels were detected at the boundary of the ischemic lesion, and these vessels developed into smaller vessels via sprouting and intussusception. Three-dimensional quantitative analysis of cerebral vessels at the boundary zone 14 days after ischemia revealed a significant ( P < 0.05) increase in numbers of vessels (n = 365) compared with numbers (n = 66) in the homologous tissue of the contralateral hemisphere. Furthermore, capillaries in the penumbra had a significantly smaller diameter (4.8 ± 2.0 μm) than capillaries (5.4 ± 1.5 μm) in the homologous regions of the contralateral hemisphere. Together, these data suggest that acute alteration of VEGF and Ang 1 in the ischemic core may mediate BBB leakage, whereas upregulation of VEGF/VEGF receptors and Ang/Tie2 at the boundary zone may regulate neovascularization in ischemic brain.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3