Fetal Type Morphologies Suggest the Presence of DICER1 Hotspot Mutations in Non–small Cell Lung Cancer

Author:

Chong Anne-Laure12,Thorner Paul3,Ellis Michelle4,Swensen Jeff4,Benlimame Naciba5,Fiset Pierre-Olivier6,Gatalica Zoran7,Evans Mark G.4,Foulkes William D.1829

Affiliation:

1. Department of Human Genetics

2. Cancer Axis, Lady Davis Institute, Segal Cancer Centre, Jewish General Hospital

3. Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON

4. Caris Life Sciences, Phoenix, AZ

5. Research Pathology Facility, Lady Davis Institute, Jewish General Hospital, Montreal

6. Department of Pathology, McGill University Health Centre

7. Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK

8. Gerald Bronfman Department of Oncology, McGill University

9. Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC

Abstract

Germline and somatic pathogenic variants (PVs) in DICER1, encoding a miRNA biogenesis protein, are associated with a wide variety of highly specific pathologic entities. The lung tumors pleuropulmonary blastoma, pulmonary blastoma (PB), and well-differentiated fetal lung adenocarcinoma (WDFLAC) are all known to harbor DICER1 biallelic variants (loss of function and/or somatic hotspot missense mutations), and all share pathologic features reminiscent of the immature lung. However, the role of DICER1 PVs in non–small cell lung cancer (NSCLC) is relatively unknown. Here, we aimed to establish the spectrum of lung pathologies associated with DICER1 hotspot PVs and to compare the mutational landscape of DICER1-mutated NSCLC with and without hotspots. We queried DNA sequencing data from 12,146 NSCLCs featuring somatic DICER1 variants. 235 (1.9%) cases harboring ≥ 1 DICER1 PV were found and 9/235 (3.8%) were DICER1 hotspot-positive cases. Histologic review of DICER1 hotspot-positive cases showed that all but one tumor were classified as within the histologic spectrum of PB/WDFLAC, whereas all the DICER1 non-hotspot double variants were classified as lung adenocarcinomas, not otherwise specified. Comparison between the mutational landscape of DICER1 hotspot-positive and hotspot-negative cases revealed a higher frequency of CTNNB1 mutations in the hotspot-positive cases (5/9 vs. 2/225; P<0.00001). We conclude that DICER1 somatic hotspots are not implicated in the most common forms of NSCLC but rather select for morphologic features of lung tumor types such as PB and WDFLAC. As a corollary, cases showing this tumor morphology should undergo testing for DICER1 variants, and if positive, genetic counseling should be considered.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Pathology and Forensic Medicine,Surgery,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3