Transcriptomic analysis reveals that heat shock protein 90α is a potential diagnostic and prognostic biomarker for cancer

Author:

Chen Wei1,Li Guanghua1,Peng Jianjun1,Dai Weigang1,Su Qiao2,He Yulong13

Affiliation:

1. Department of Gastrointestinal Surgery

2. Animal Experiment Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China

3. Center of Gastrointestinal Disease, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China

Abstract

The molecular chaperone heat shock protein 90 (Hsp90) is highly expressed in tumor tissue according to many studies. However, there is no large-scale study investigating the expression of Hsp90 in pan-cancer so far, and the molecular mechanisms leading to aberrant Hsp90 expression are also largely unknown. To address these questions, we performed an in silico analysis of Hsp90 expression using mRNA sequencing data from The Cancer Genome Atlas study. The results were further validated using independent datasets. We found that the expression of HSP90AA1, a subtype of Hsp90, was much higher in hepatocellular carcinoma than in adjacent normal liver tissue. A large cancer panel with eight more cancer types revealed a similar trend except for prostate cancer, which had low HSP90AA1 expression in tumor tissue. Heat shock factor 1 followed a similar trend as HSP90AA1, with higher expression in cancer. HSP90AA1 expression was closely related to its copy numbers. Deletion of the HSP90AA1 locus in a subset of hepatocellular carcinoma led to low HSP90AA1 expression. In addition, higher HSP90AA1 expression was associated with poorer prognosis in hepatocellular carcinoma patients. In a multivariable analysis including tumor, node and metastasis stage, HSP90AA1 expression remained a negative prognostic factor, suggesting that the effect of HSP90AA1 was independent of tumor stage. In conclusion, we demonstrated that high HSP90AA1 expression was ubiquitous in cancer and that HSP90AA1 was a potential diagnostic and prognostic biomarker for hepatocellular carcinoma.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Reference30 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3