Low expression of thiamine pyrophosphokinase-1 contributes to brain susceptibility to thiamine deficiency

Author:

Xia Yingfeng1,Qian Ting12,Fei Guoqiang1,Cheng Xiaoqin1,Zhao Lei3,Sang Shaoming1,Zhong Chunjiu1

Affiliation:

1. Department of Neurology, Zhongshan Hospital; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science; Institutes of Brain Science; National Clinical Research Center for Aging and Medicine, Huashan Hospital; Fudan University

2. Department of Neurology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine

3. Department of Neurology, Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China

Abstract

Thiamine deficiency is a well-known risk factor for the development of severe encephalopathy, such as Wernicke encephalopathy and Korsakoff syndrome, but the underlying mechanism is still mysterious. This study aims to investigate the expression levels of thiamine metabolism genes in different tissues and their impact on brain susceptibility to thiamine deficiency. The mRNA and protein levels of four genes known to be associated with thiamine metabolism: thiamine pyrophosphokinase-1 (Tpk), Solute carrier family 19 member 2 (Slc19a2), Slc19a3, and Slc25a19, in the brain, kidney, and liver of mice were examined. Thiamine diphosphate (TDP) levels were measured in these tissues. Mice were subjected to dietary thiamine deprivation plus pyrithiamine (PTD), a specific TPK inhibitor, or pyrithiamine alone to observe the reduction in TDP and associated pathological changes. TPK mRNA and protein expression levels were lowest in the brain compared to the kidney and liver. Correspondingly, TDP levels were also lowest in the brain. Mice treated with PTD or pyrithiamine alone showed an initial reduction in brain TDP levels, followed by reductions in the liver and kidney. PTD treatment caused significant neuron loss, neuroinflammation, and blood–brain barrier disruption, whereas dietary thiamine deprivation alone did not. TPK expression level is the best indicator of thiamine metabolism status. Low TPK expression in the brain appears likely to contribute to brain susceptibility to thiamine deficiency, underscoring a critical role of TPK in maintaining cerebral thiamine metabolism and preventing thiamine deficiency-related brain lesions.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3