Structure-decoupled functional connectome-based brain age prediction provides higher association to cognition

Author:

Chen Huan1,Wang Haiyan1,Yu Mingxia1,Duan Bin1

Affiliation:

1. Department of Internal Medicine, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China

Abstract

Brain age prediction as well as the prediction difference has been well examined to be a potential biomarker for brain disease or abnormal aging process. However, less knowledge was reported for the cognitive association within normal population. In this study, we proposed a novel approach to brain age prediction by structure-decoupled functional connectome. The original functional connectome was decomposed and decoupled into a structure-decoupled functional connectome using structural connectome harmonics. Our method was applied to a large dataset of normal aging individuals and achieved a high correlation between predicted and chronological age (r = 0.77). Both the original FC and structure-decoupled FC could be well-trained in a brain age prediction model. Significant remarkable relationships between the brain age prediction difference (predicted age minus chronological age) and cognitive scores were discovered. However, the brain age-predicted difference driven by structure-decoupled FC showed a stronger correction to the two cognitive scores (MMSE: r = −0.27, P-value = 0.002; MoCA: r = −0.32, P-value = 0.0003). Our findings suggest that our structure-decoupled functional connectivity approach could provide a more individual-specific functional network, leading to improved brain age prediction performance and a better understanding of cognitive decline in aging.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3