Assessing the contribution of plastic-associated obesogenic compounds to cardiometabolic diseases

Author:

Warger Jacob1,Lucas Michaela123,Lucas Andrew4

Affiliation:

1. Medical School, The University of Western Australia

2. Department of Immunology PathWest

3. Department of Immunology, Sir Charles Gairdner Hospital & Perth Childrens Hospital

4. School of Biomedical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia

Abstract

Purpose of review To present recent evidence that strengthens the concept that exogenous pollutants contribute to adipose dysfunction and increased rates of disease and to highlight the ineffective regulation of this risk as industry switches to related but similarly toxic variants. Recent findings Substitutes for common phthalates and the highly regulated bisphenol A (BPA) show similar deleterious effects on adipocytes. The well tolerated limit for BPA exposure has been reduced in Europe to below the level detected in recent population studies. Additionally, the role for BPA-induced inflammation mediated by interleukin 17a has been described in animal and human studies. Summary Despite experimental and associative evidence that supports plastics and plastic associated chemicals deleteriously influencing adipose homeostatasis and contributing to metabolic diseases, structurally related alternate chemicals are being substituted by manufacturers to circumvent trailing regulatory actions.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Nutrition and Dietetics,Endocrinology,Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3