Machine Learning–Based Identification of Risk Factors of Keratoconus Progression Using Raw Corneal Tomography Data

Author:

Cohen-Tayar Yamit123ORCID,Cohen Hadar3,Key Dor123,Tiosano Alon123,Rozanes Eliane123,Livny Eitan123,Bahar Irit123,Nahum Yoav123ORCID

Affiliation:

1. Department of Ophthalmology, Rabin Medical Center – Beilinson Hospital, Petach Tikva, Israel;

2. Laboratory of Eye Research, Felsenstein Medical Research Center, Petach Tikva, Israel; and

3. Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.

Abstract

Purpose: The purpose of this study was to identify early indicators of keratoconus progression in Pentacam data using machine learning (ML) techniques. Methods: A retrospective Pentacam tabular data set was created by retrieving 11,760 tomography tests performed in patients with keratoconus. Data for eyes labeled unstable based on their referral for cross-linking were differentiated from data for eyes labeled stable and not referred for follow-up procedures. A boosted decision tree was trained on the final data set using a cross-validation method. Results: The final labeled data set included 1218 tomography tests. Training a ML model on a single test for each eye did not accurately predict disease progression, as indicated by the mean receiver-operating characteristic area under the curve of 0.59 ± 0.1, with precision of 0.27, recall of 0.3, and F1 score of 0.28. Training on serial tests for each eye included 819 tomography scans and yielded good prognostic abilities: a receiver-operating characteristic area under the curve of 0.75 ± 0.07, precision of 0.32, recall of 0.67, and F1 score of 0.43. In addition, 4 of the 55 Pentacam raw data parameters predominantly used the algorithm decision: age, central keratoconus index, Rs B, and D10 mm pachy. Conclusions: This study revealed specific dominant parameters attributing to the classification of stability, which are not routinely assessed in determining progression in common practice. Using ML techniques, keratoconus deterioration was evaluated algorithmically with training on multiple tests, yet was not predicted by a single tomography test. Hence, our study highlights novel factors to the current consideration of cross-linking referral and may serve as a supportive tool for clinicians.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Reference13 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3