Effect of Therapeutic Radiation on Polycaprolactone/Hydroxyapatite Biomaterials in a Calvarial Model

Author:

Park Hojin1,Jeong Woo Shik2,Choi Jong Woo2

Affiliation:

1. Department of Plastic and Reconstructive Surgery, Korea University College of Medicine, Korea University Anam Hospital, South Korea

2. Department of Plastic and Reconstructive Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea

Abstract

Bone defects caused by cancer resection often require postoperative radiotherapy. Although various synthetic polymers have been introduced as graft materials, their biological behavior after radiation exposure remains unclear. Here, we investigated how polycaprolactone/hydroxyapatite (PCL/HA) implants respond to therapeutic radiation exposure (in terms of volume and bone regeneration). Four 8 mm diameter calvaria defects were surgically created on the parietal bone of 6 rabbits. PCL/HA implants made of porous, solid, and hybrid polymers were grafted by random placement in each defect. The fourth defect was left untreated. Four weeks after surgery, radiation exposure was conducted weekly for 6 weeks (total: 48 Gy). Micro-computed tomography and histologic analysis were performed at 3 and 6 months, and 6 months postradiation, respectively. The total augmented volumes of all implants showed no significant differences between 3- and 6-months postradiation computed tomography images. In histologic analysis, new bone areas were 0.45±0.11 mm2, 2.02±0.34 mm2, and 3.60±0.77 mm2 in solid, hybrid, and porous polymer grafts, respectively. Bone regeneration was limited to the periphery of the defect in the hybrid and porous polymer grafts, whereas new bone formed inside the porous implant. The total augmented volume of the defect was maintained without significant absorption even after radiation exposure. The PCL/HA implant maintained its structure despite radiation exposure. The porous PCL/HA implant demonstrated excellent bone regeneration, followed by the hybrid and solid implants. The PCL/HA implant is a promising candidate for bone defect reconstruction.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

General Medicine,Otorhinolaryngology,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3